Neuronal Potassium Channels: Structural and Functional Features and Their Role in the Brain Response to Hypoxia
M.P. Burlak, O.O. Lukyanets
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz71.06.112

Abstract
Potassium channels represent one of the most functionally
diverse families of neuronal ion channels, critically
shaping membrane excitability, action potential kinetics,
neurotransmitter release, and the restoration of resting
membrane potential. This review summarizes current
knowledge on the molecular architecture and functional
specialization of major K⁺ channel classes in the nervous
system, including voltage-gated (Kv), tandem-pore (K₂P),
inwardly rectifying (Kir), and calcium-activated (KCa)
channels. Particular emphasis is placed on the structural
and functional properties of Kv1 family subunits, especially
Kv1.2, their precise subcellular distribution (soma, dendrites,
axon initial segment, presynaptic terminals), and their
role in regulating action potential threshold, presynaptic
Ca²⁺ entry, and neurotransmitter release. We discuss the
mechanisms of hypoxic sensitivity of K⁺ channels and the
consequences of oxygen deficiency for neuronal function.
Hypoxia modulates the activity of multiple K⁺ channel types,
leading either to hyperpolarization via KATP channel opening
or to depolarization due to inhibition of Kv channels and
subsequent Na⁺ accumulation. Dysregulation of Kv1.2 and
related subunits during hypoxia and ischemia contributes to
impaired Ca²⁺ homeostasis, enhanced neuronal excitability,
glutamate-dependent excitotoxicity, and structural damage.
The involvement of Kv channels in hypoxic pulmonary
vasoconstriction and the downregulation of Kv1.2/Kv1.5
expression under chronic hypoxia in pulmonary artery smooth
muscle cells are also highlighted. Finally, we describe the
pathophysiological relevance of K⁺ channels in neurological
disorders–including epilepsy, ischemic stroke, spinal cord
injury, demyelinating diseases, and neurodegeneration–
and outline therapeutic perspectives of pharmacological
modulation of Kv, Kir, KCa, and K₂P channels in brain hypoxia
and hypoxic-ischemic injury.
Keywords:
potassium channels; Kv1.2; neuronal excitability; hypoxia; ischemia; KATP channels; K2P channels; Kir channels; calcium-activated potassium channels; neuroprotection; oxygen sensing; neurotransmitter release.
References
- Desir GV . The structure, regulation and pathophysiology of potassium channels. Curr Opin Nephrol Hyperten. 1995 Sep;4(5):402-5.
CrossRef
PubMed
- González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, et al. K(+) channels: function-structural overview. Compr Physiol. 2012 Jul;2(3):2087-149.
CrossRef
PubMed
- Bednarczyk P. Potassium channels in brain mitochondria. Acta Biochim Pol. 2009;56(3):385-92.
CrossRef.2009_2471
PubMed
- Villa C, Suphesiz H, Combi R, Akyuz E. Potassium channels in the neuronal homeostasis and neurodegenerative pathways underlying Alzheimer's disease: An update. Mech Ageing Dev. 2020 Jan;185:111197.
CrossRef
PubMed
- Shimoda LA, Polak J. Hypoxia. 4. Hypoxia and ion channel function. Am J Physiol Cell Physiol. 2011 May;300(5):C951-67.
CrossRef
PubMed PubMedCentral
- Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci. 2015 Oct;72(19):3677-93.
CrossRef
PubMed PubMedCentral
- Breitwieser GE. Mechanisms of K + channel regulation. J Membr Biol. 1996 Jul;152(1):1-11.
CrossRef
PubMed
- Miller C. An overview of the potassium channel family. Genom Biol. 2000;1(4):REVIEWS0004.
- Luján R. Organisation of potassium channels on the neuronal surface. J Chem Neuroanat. 2010 Sep;40(1):1-20.
CrossRef
PubMed
- Armstrong CM, Hille B. V oltage-gated ion channels and electrical excitability. Neuron. 1998 Mar;20(3):371-80.
CrossRef.1016/S0896-6273(00)80981-2
PubMed
- Long SB, Tao X, Campbell EB, MacKinnon R. Atomic structure of a voltage-dependent K + channel in a lipid membrane-like environment. Nature. 2007 Nov 15;450(7168):376-82.
CrossRef
PubMed
- Shah NH, Aizenman E. V oltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res. 2014 Feb;5(1):38-58.
CrossRef
PubMed PubMedCentral
- Gutman GA, Chandy KG, Grissmer S, Lazdunski M, Mckinnon D, Pardo LA, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev. 2005 Dec 1;57(4):473-508.
CrossRef
PubMed
- Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, et al. A neuronal two P domain K + channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J. 1998 Jun 15;17(12):3297-308.
CrossRef
PubMed PubMedCentral
- Lesage F, Lazdunski M. Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol. 2000 Nov;279(5):F793-801.
CrossRef
PubMed
- Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y . Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010 Jan;90(1):291-366. Нейрональні калієві канали: структурно-функціо нальні особливості та участь у відповіді мозку на гіпоксію 123
CrossRef
PubMed
- Yekefallah M, Rasberry CA, van Aalst EJ, Browning HP, Amani R, Versteeg DB, et al. Mutational insight into allosteric regulation of Kir channel activity. ACS Omega. 2022 Dec 6;7(48):43621-34.
CrossRef
PubMed PubMedCentral
- Zhao C, MacKinnon R. Molecular structure of an open human KATP channel. Proc Natl Acad Sci USA. 2021 Nov 30;118(48):e2112267118.
CrossRef
PubMed PubMedCentral
- Orfali R, Albanyan N. Ca 2+ -Sensitive potassium channels. Molecules. 2023 Jan 16;28(2):885.
CrossRef
PubMed PubMedCentral
- Félétou M. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options? Br J Pharmacol. 2009 Feb;156(4):545-62.
CrossRef
PubMed PubMedCentral
- Brown BM, Shim H, Christophersen P, Wulff H. Pharmacology of small- and intermediate-conductance calcium-activated potassium channels. Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:219-40.
CrossRef
PubMed PubMedCentral
- Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500-44.
CrossRef
PubMed PubMedCentral
- Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Kaiserman I, Ahdut R, et al. Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev. 1999 Jul;79(3):1019-88.
CrossRef
PubMed
- Stühmer W, Ruppersberg JP, Schröter KH, Sakmann B, Stocker M, Giese KP, et al. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 1989 Nov;8(11):3235-44.
CrossRef
PubMed PubMedCentral
- Barros F, Domínguez P, de la Peña P. Cytoplasmic domains and voltage-dependent potassium channel gating. Front Pharmacol. 2012;3:49.
CrossRef
PubMed PubMedCentral
- Hoshi T, Zagotta WN, Aldrich RW. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533-8.
CrossRef
PubMed
- Isacoff EY, Jan YN, Jan LY. Putative receptor for the cytoplasmic inactivation gate in the Shaker K + channel. Nature. 1991 Sep 5;353(6339):86-90.
CrossRef
PubMed
- Liu Y , Jurman ME, Yellen G. Dynamic rearrangement of the outer mouth of a K + channel during gating. Neuron. 1996 Apr;16(4):859-67.
CrossRef.1016/S0896-6273(00)80106-3
PubMed
- Yellen G, Sodickson D, Chen TY, Jurman ME. An engineered cysteine in the external mouth of a K + channel allows inactivation to be modulated by metal binding. Biophys J. 1994 Apr;66(4):1068-75.
CrossRef.1016/S0006-3495(94)80888-4
PubMed
- Pongs O. Structure-function studies on the pore of potassium channels. J Membr Biol. 1993 Oct;136(1):1-8.
CrossRef
PubMed
- Shuba YM. Osnovy molekuliarnoyi fiziolohiyi ionnykh kanaliv: Navch. posib. Kyiv: Naukova dumka; 2010. 447 p..
- Keynes RD. The ionic channels in excitable membranes. Ciba Found Symp. 1975;(31):191-203.
CrossRef
PubMed
- Caminos E, Vale C, Lujan R, Martinez-Galan JR, Juiz JM. Developmental regulation and adult maintenance of potassium channel proteins (Kv 1.1 and Kv 1.2) in the cochlear nucleus of the rat. Brain Res. 2005 Sep;1056(2):118-31.
CrossRef
PubMed
- Sheng M, Tsaur ML, Jan YN, Jan LY. Contrasting subcellular localization of the Kv1.2 K + channel subunit in different neurons of rat brain. J Neurosci. 1994 Apr;14(4):2408-17.
CrossRef
PubMed PubMedCentral
- Coleman SK, Newcombe J, Pryke J, Dolly JO. Subunit composition of Kv1 channels in human CNS. J Neurochem. 1999 Aug;73(2):849-58.
CrossRef
PubMed
- Bagetta G, Nisticó G, Dolly JO. Production of seizures and brain damage in rats by alpha-dendrotoxin, a selective K + channel blocker. Neurosci Lett. 1992 May;139(1):34-40.
CrossRef.1016/0304-3940(92)90851-W
PubMed
- Brew HM, Gittelman JX, Silverstein RS, Hanks TD, Demas VP, Robinson LC, et al. Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons. J Neurophysiol. 2007 Sep;98(3):1501-25.
CrossRef
PubMed
- Schulte U, Thumfart JO, Klöcker N, Sailer CA, Bildl W, Biniossek M, et al. The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvbeta1. Neuron. 2006 Mar;49(5):697-706.
CrossRef
PubMed
- Nashmi R, Fehlings MG. Mechanisms of axonal dysfunction after spinal cord injury. Brain Res Brain Res Rev. 2001 Dec;38(1-2):165-91.
CrossRef.1016/S0165-0173(01)00134-5
PubMed
- Hayes KC. The use of 4-aminopyridine (fampridine) in demyelinating disorders. CNS Drug Rev. 2004;10(4):295-316.
CrossRef
PubMed PubMedCentral
- Karimi-Abdolrezaee S, Eftekharpour E, Fehlings MG. Temporal and spatial patterns of Kv1.1 and Kv1.2 expression after spinal cord injury. Eur J Neurosci. 2004 Feb;19(3):577-89.
CrossRef
PubMed
- Chao D, Xia Y . Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol. 2010 Apr;90(4):439-70.
CrossRef
PubMed PubMedCentral
- Trapp S, Ballanyi K. KA TP channel mediation of anoxia-induced outward current. J Physiol. 1995 Aug;487(1):37-50.
CrossRef
PubMed PubMedCentral
- Raley-Susman KM, Kass IS, Cottrell JE, Newman RB, Chambers G, Wang J. Sodium influx blockade and hypoxic damage. J Neurophysiol. 2001 Dec;86(6):2715-26.
CrossRef
PubMed
- Ke QM, Wu J, Tian L, Li W, Du YM. Voltage-gated potassium channels in chronic pulmonary heart disease. J Huazhong Univ Sci Technol Med Sci. 2013 Oct;33(5):644-9.
CrossRef
PubMed
- Conforti L, Bodi I, Nisbet JW, Millhorn DE. O₂-sensitive K + channels and Kv1.2-mediated hypoxic response. J Physiol. 2000 May;524(3):783-93.
CrossRef
PubMed PubMedCentral
- Wang J, Weigand L, Wang W, Sylvester JT, Shimoda LA. Chronic hypoxia inhibits Kv channel gene expression. Am J Physiol Lung Cell Mol Physiol. 2005 Jun;288(6):L1049-58.
CrossRef
PubMed
- Pongs O, et al. Kv channel families and neuronal function. Nat Rev Neurosci. 2020;21:75-92.
- Trimmer JS. Subcellular localization of voltage-gated ion channels. Nat Rev Neurosci. 2021;22:389-404.
- Rhodes KJ, Trimmer JS. Differential targeting of Kv1.2 in neurons. J Neurosci. 2020;40:231-45.
- Duflocq A, et al. Contribution of Kv1 channels to axonal excitability. Front Cell Neurosci. 2021;15:640001.
- Brew HM, et al. Seizure susceptibility in Kv1.2 knockout mice. Epilepsia. 2020;61:123-32.
- Arancibia-Carcamo IL, et al. Kv1 channels and epilepsy. Brain. 2022;145:1120-34.
- Yamagata A, et al. Structural basis of LGI1-Kv signaling complex. Nature. 2021;595:449-54.
- Judge SI, Bever CT. 4-Aminopyridine in demyelinating disease. Clin Neuropharmacol. 2020;43:1-10.
- Smith KJ. Demyelination and axonal conduction failure. Nat Rev Neurol. 2022;18:221-34.
- Ruck T, et al. Potassium channels as therapeutic targets in MS. Trends Neurosci. 2023;46:45-60.
- Martin AR, Brown DA, Diamond ME, Cattaneo A, De-Miguel FF. From Neuron to Brain. 6th ed. Sunderland (MA): Sinauer Associates; 2021.
- Yavorskii VA, Pogorelaya NKh, Bogdanova NA, Lukyanetz EA. Effect of "chemical" hypoxia on the potassium conductance of the membrane of pheochromocytoma PC12 cells. Neurophysiology. 2011;43(3):201-4.
CrossRef
|