Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(6): 112-124


Neuronal Potassium Channels: Structural and Functional Features and Their Role in the Brain Response to Hypoxia

M.P. Burlak, O.O. Lukyanets

  1. O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz71.06.112


Abstract

Potassium channels represent one of the most functionally diverse families of neuronal ion channels, critically shaping membrane excitability, action potential kinetics, neurotransmitter release, and the restoration of resting membrane potential. This review summarizes current knowledge on the molecular architecture and functional specialization of major K⁺ channel classes in the nervous system, including voltage-gated (Kv), tandem-pore (K₂P), inwardly rectifying (Kir), and calcium-activated (KCa) channels. Particular emphasis is placed on the structural and functional properties of Kv1 family subunits, especially Kv1.2, their precise subcellular distribution (soma, dendrites, axon initial segment, presynaptic terminals), and their role in regulating action potential threshold, presynaptic Ca²⁺ entry, and neurotransmitter release. We discuss the mechanisms of hypoxic sensitivity of K⁺ channels and the consequences of oxygen deficiency for neuronal function. Hypoxia modulates the activity of multiple K⁺ channel types, leading either to hyperpolarization via KATP channel opening or to depolarization due to inhibition of Kv channels and subsequent Na⁺ accumulation. Dysregulation of Kv1.2 and related subunits during hypoxia and ischemia contributes to impaired Ca²⁺ homeostasis, enhanced neuronal excitability, glutamate-dependent excitotoxicity, and structural damage. The involvement of Kv channels in hypoxic pulmonary vasoconstriction and the downregulation of Kv1.2/Kv1.5 expression under chronic hypoxia in pulmonary artery smooth muscle cells are also highlighted. Finally, we describe the pathophysiological relevance of K⁺ channels in neurological disorders–including epilepsy, ischemic stroke, spinal cord injury, demyelinating diseases, and neurodegeneration– and outline therapeutic perspectives of pharmacological modulation of Kv, Kir, KCa, and K₂P channels in brain hypoxia and hypoxic-ischemic injury.

Keywords: potassium channels; Kv1.2; neuronal excitability; hypoxia; ischemia; KATP channels; K2P channels; Kir channels; calcium-activated potassium channels; neuroprotection; oxygen sensing; neurotransmitter release.

References

  1. Desir GV . The structure, regulation and pathophysiology of potassium channels. Curr Opin Nephrol Hyperten. 1995 Sep;4(5):402-5.
  2. CrossRef PubMed
  3. González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, et al. K(+) channels: function-structural overview. Compr Physiol. 2012 Jul;2(3):2087-149.
  4. CrossRef PubMed
  5. Bednarczyk P. Potassium channels in brain mitochondria. Acta Biochim Pol. 2009;56(3):385-92.
  6. CrossRef.2009_2471 PubMed
  7. Villa C, Suphesiz H, Combi R, Akyuz E. Potassium channels in the neuronal homeostasis and neurodegenerative pathways underlying Alzheimer's disease: An update. Mech Ageing Dev. 2020 Jan;185:111197.
  8. CrossRef PubMed
  9. Shimoda LA, Polak J. Hypoxia. 4. Hypoxia and ion channel function. Am J Physiol Cell Physiol. 2011 May;300(5):C951-67.
  10. CrossRef PubMed PubMedCentral
  11. Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci. 2015 Oct;72(19):3677-93.
  12. CrossRef PubMed PubMedCentral
  13. Breitwieser GE. Mechanisms of K + channel regulation. J Membr Biol. 1996 Jul;152(1):1-11.
  14. CrossRef PubMed
  15. Miller C. An overview of the potassium channel family. Genom Biol. 2000;1(4):REVIEWS0004.
  16. Luján R. Organisation of potassium channels on the neuronal surface. J Chem Neuroanat. 2010 Sep;40(1):1-20.
  17. CrossRef PubMed
  18. Armstrong CM, Hille B. V oltage-gated ion channels and electrical excitability. Neuron. 1998 Mar;20(3):371-80.
  19. CrossRef.1016/S0896-6273(00)80981-2 PubMed
  20. Long SB, Tao X, Campbell EB, MacKinnon R. Atomic structure of a voltage-dependent K + channel in a lipid membrane-like environment. Nature. 2007 Nov 15;450(7168):376-82.
  21. CrossRef PubMed
  22. Shah NH, Aizenman E. V oltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res. 2014 Feb;5(1):38-58.
  23. CrossRef PubMed PubMedCentral
  24. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, Mckinnon D, Pardo LA, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev. 2005 Dec 1;57(4):473-508.
  25. CrossRef PubMed
  26. Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, et al. A neuronal two P domain K + channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J. 1998 Jun 15;17(12):3297-308.
  27. CrossRef PubMed PubMedCentral
  28. Lesage F, Lazdunski M. Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol. 2000 Nov;279(5):F793-801.
  29. CrossRef PubMed
  30. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y . Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010 Jan;90(1):291-366. Нейрональні калієві канали: структурно-функціо нальні особливості та участь у відповіді мозку на гіпоксію 123
  31. CrossRef PubMed
  32. Yekefallah M, Rasberry CA, van Aalst EJ, Browning HP, Amani R, Versteeg DB, et al. Mutational insight into allosteric regulation of Kir channel activity. ACS Omega. 2022 Dec 6;7(48):43621-34.
  33. CrossRef PubMed PubMedCentral
  34. Zhao C, MacKinnon R. Molecular structure of an open human KATP channel. Proc Natl Acad Sci USA. 2021 Nov 30;118(48):e2112267118.
  35. CrossRef PubMed PubMedCentral
  36. Orfali R, Albanyan N. Ca 2+ -Sensitive potassium channels. Molecules. 2023 Jan 16;28(2):885.
  37. CrossRef PubMed PubMedCentral
  38. Félétou M. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options? Br J Pharmacol. 2009 Feb;156(4):545-62.
  39. CrossRef PubMed PubMedCentral
  40. Brown BM, Shim H, Christophersen P, Wulff H. Pharmacology of small- and intermediate-conductance calcium-activated potassium channels. Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:219-40.
  41. CrossRef PubMed PubMedCentral
  42. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500-44.
  43. CrossRef PubMed PubMedCentral
  44. Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Kaiserman I, Ahdut R, et al. Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev. 1999 Jul;79(3):1019-88.
  45. CrossRef PubMed
  46. Stühmer W, Ruppersberg JP, Schröter KH, Sakmann B, Stocker M, Giese KP, et al. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 1989 Nov;8(11):3235-44.
  47. CrossRef PubMed PubMedCentral
  48. Barros F, Domínguez P, de la Peña P. Cytoplasmic domains and voltage-dependent potassium channel gating. Front Pharmacol. 2012;3:49.
  49. CrossRef PubMed PubMedCentral
  50. Hoshi T, Zagotta WN, Aldrich RW. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533-8.
  51. CrossRef PubMed
  52. Isacoff EY, Jan YN, Jan LY. Putative receptor for the cytoplasmic inactivation gate in the Shaker K + channel. Nature. 1991 Sep 5;353(6339):86-90.
  53. CrossRef PubMed
  54. Liu Y , Jurman ME, Yellen G. Dynamic rearrangement of the outer mouth of a K + channel during gating. Neuron. 1996 Apr;16(4):859-67.
  55. CrossRef.1016/S0896-6273(00)80106-3 PubMed
  56. Yellen G, Sodickson D, Chen TY, Jurman ME. An engineered cysteine in the external mouth of a K + channel allows inactivation to be modulated by metal binding. Biophys J. 1994 Apr;66(4):1068-75.
  57. CrossRef.1016/S0006-3495(94)80888-4 PubMed
  58. Pongs O. Structure-function studies on the pore of potassium channels. J Membr Biol. 1993 Oct;136(1):1-8.
  59. CrossRef PubMed
  60. Shuba YM. Osnovy molekuliarnoyi fiziolohiyi ionnykh kanaliv: Navch. posib. Kyiv: Naukova dumka; 2010. 447 p..
  61. Keynes RD. The ionic channels in excitable membranes. Ciba Found Symp. 1975;(31):191-203.
  62. CrossRef PubMed
  63. Caminos E, Vale C, Lujan R, Martinez-Galan JR, Juiz JM. Developmental regulation and adult maintenance of potassium channel proteins (Kv 1.1 and Kv 1.2) in the cochlear nucleus of the rat. Brain Res. 2005 Sep;1056(2):118-31.
  64. CrossRef PubMed
  65. Sheng M, Tsaur ML, Jan YN, Jan LY. Contrasting subcellular localization of the Kv1.2 K + channel subunit in different neurons of rat brain. J Neurosci. 1994 Apr;14(4):2408-17.
  66. CrossRef PubMed PubMedCentral
  67. Coleman SK, Newcombe J, Pryke J, Dolly JO. Subunit composition of Kv1 channels in human CNS. J Neurochem. 1999 Aug;73(2):849-58.
  68. CrossRef PubMed
  69. Bagetta G, Nisticó G, Dolly JO. Production of seizures and brain damage in rats by alpha-dendrotoxin, a selective K + channel blocker. Neurosci Lett. 1992 May;139(1):34-40.
  70. CrossRef.1016/0304-3940(92)90851-W PubMed
  71. Brew HM, Gittelman JX, Silverstein RS, Hanks TD, Demas VP, Robinson LC, et al. Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons. J Neurophysiol. 2007 Sep;98(3):1501-25.
  72. CrossRef PubMed
  73. Schulte U, Thumfart JO, Klöcker N, Sailer CA, Bildl W, Biniossek M, et al. The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvbeta1. Neuron. 2006 Mar;49(5):697-706.
  74. CrossRef PubMed
  75. Nashmi R, Fehlings MG. Mechanisms of axonal dysfunction after spinal cord injury. Brain Res Brain Res Rev. 2001 Dec;38(1-2):165-91.
  76. CrossRef.1016/S0165-0173(01)00134-5 PubMed
  77. Hayes KC. The use of 4-aminopyridine (fampridine) in demyelinating disorders. CNS Drug Rev. 2004;10(4):295-316.
  78. CrossRef PubMed PubMedCentral
  79. Karimi-Abdolrezaee S, Eftekharpour E, Fehlings MG. Temporal and spatial patterns of Kv1.1 and Kv1.2 expression after spinal cord injury. Eur J Neurosci. 2004 Feb;19(3):577-89.
  80. CrossRef PubMed
  81. Chao D, Xia Y . Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol. 2010 Apr;90(4):439-70.
  82. CrossRef PubMed PubMedCentral
  83. Trapp S, Ballanyi K. KA TP channel mediation of anoxia-induced outward current. J Physiol. 1995 Aug;487(1):37-50.
  84. CrossRef PubMed PubMedCentral
  85. Raley-Susman KM, Kass IS, Cottrell JE, Newman RB, Chambers G, Wang J. Sodium influx blockade and hypoxic damage. J Neurophysiol. 2001 Dec;86(6):2715-26.
  86. CrossRef PubMed
  87. Ke QM, Wu J, Tian L, Li W, Du YM. Voltage-gated potassium channels in chronic pulmonary heart disease. J Huazhong Univ Sci Technol Med Sci. 2013 Oct;33(5):644-9.
  88. CrossRef PubMed
  89. Conforti L, Bodi I, Nisbet JW, Millhorn DE. O₂-sensitive K + channels and Kv1.2-mediated hypoxic response. J Physiol. 2000 May;524(3):783-93.
  90. CrossRef PubMed PubMedCentral
  91. Wang J, Weigand L, Wang W, Sylvester JT, Shimoda LA. Chronic hypoxia inhibits Kv channel gene expression. Am J Physiol Lung Cell Mol Physiol. 2005 Jun;288(6):L1049-58.
  92. CrossRef PubMed
  93. Pongs O, et al. Kv channel families and neuronal function. Nat Rev Neurosci. 2020;21:75-92.
  94. Trimmer JS. Subcellular localization of voltage-gated ion channels. Nat Rev Neurosci. 2021;22:389-404.
  95. Rhodes KJ, Trimmer JS. Differential targeting of Kv1.2 in neurons. J Neurosci. 2020;40:231-45.
  96. Duflocq A, et al. Contribution of Kv1 channels to axonal excitability. Front Cell Neurosci. 2021;15:640001.
  97. Brew HM, et al. Seizure susceptibility in Kv1.2 knockout mice. Epilepsia. 2020;61:123-32.
  98. Arancibia-Carcamo IL, et al. Kv1 channels and epilepsy. Brain. 2022;145:1120-34.
  99. Yamagata A, et al. Structural basis of LGI1-Kv signaling complex. Nature. 2021;595:449-54.
  100. Judge SI, Bever CT. 4-Aminopyridine in demyelinating disease. Clin Neuropharmacol. 2020;43:1-10.
  101. Smith KJ. Demyelination and axonal conduction failure. Nat Rev Neurol. 2022;18:221-34.
  102. Ruck T, et al. Potassium channels as therapeutic targets in MS. Trends Neurosci. 2023;46:45-60.
  103. Martin AR, Brown DA, Diamond ME, Cattaneo A, De-Miguel FF. From Neuron to Brain. 6th ed. Sunderland (MA): Sinauer Associates; 2021.
  104. Yavorskii VA, Pogorelaya NKh, Bogdanova NA, Lukyanetz EA. Effect of "chemical" hypoxia on the potassium conductance of the membrane of pheochromocytoma PC12 cells. Neurophysiology. 2011;43(3):201-4.
  105. CrossRef

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2026.