Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(6): 78-84


OSMOTIC CHARACTERISTICS AND INDUCED SHAPE CHANGE OF RED BLOOD CELLS TREATED WITH GLUTAMINE AND N-ACETYLCYSTEINE BEFORE CRYOPRESERVATION

V.V. Ramazanov1, S.V. Rudenko2

  1. Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkіv, Ukraine
DOI: https://doi.org/10.15407/fz71.06.078


Abstract

Transfusion of red blood cells (RBC) to patients with hemorrhagic shock leads to the development of post- transfusion inflammation due to the destruction of damaged RBC by macrophages in the spleen and liver, the release of iron ions, and an increase in active oxygen species levels. Constant transfusion of RBC leads to deterioration of the function of the main organs, the pancreas, liver, and heart, as a result of iron overload of the body. These negative circumstances require the development of a procedure for stabilizing cryopreserved RBC in order to prevent their significant hemolysis during transfusion. The osmotic characteristics and shape changes of RBC in a sulfate medium were studied in response to the anion channel inhibitor DIDS. The change in the intensity of optical density fluctuations in a stirred RBC suspension is an indicator of changes in the content of discoid cells (normocytes). It was shown that in a medium containing Na 2 SO 4 (110 mmol/l), RBC were transformed into spherical shapes within ~20 s. Inclusion of DIDS in the medium before adding RBC causes reversible cell retransformation in the direction of spheres → discs → spheres. This retransformation is blocked for cryopreserved cells. At the same time, treatment of erythrocytes before freezing with a medium that includes substrates for the synthesis of glutathione (glutamine and N-acetylcysteine) ensures a reduction in cell hemolysis after thawing and washing of the cells. An increase in the osmotic stability of washed RBC during hypothermic storage is noted. In addition, the restoration of reversible retransformation of cryopreserved cells to the action of DIDS is revealed. The obtained results indicate that stimulation of glutathione synthesis by substrates promotes an increase in the resistance of RBC to damaging freezing factors. This resistance can likely provide a decrease in the degree of destruction of RBC in the body during transfusion. In addition, an increase in the level of glutathione promotes an increase in the antioxidant potential of RBC, which is necessary for neutralizing active oxygen species and inhibiting the development of post-transfusion inflammation.

Keywords: erythrocytes; cryopreservation; glutamine; N-acetylcysteine; cell shape.

References

  1. Lahmann JM, Sanchez CC, Benson JD, Acker JP, Hig-gins AZ. Implications of variability in cell membrane permeability for design of methods to remove glycerol from frozen-thawed erythrocytes. Cryobiology. 2020; 92(1):168-79. doi: 10.1016/j.cryobiol.2020.01.006.
  2. CrossRef PubMed PubMedCentral
  3. Spitalnik SL. Stored red blood cell transfusions: iron, inflammation, immunity, and infection. Transfusion. 2014;54(10):2365-71. doi: 10.1111/trf.12848.
  4. CrossRef PubMed PubMedCentral
  5. Ansari RA, Husain K, Rizvi SA. Role of transcription factors in steatohepatitis and hypertension after ethanol: The epicenter of metabolism (Review). Biomolecules. 2016; 6(3): 1-15. doi: 10.3390/biom6030029.
  6. CrossRef PubMed PubMedCentral
  7. Xiong Y , Wang Z, Zhang A, et al. Inhibition of glutathione synthesis via decreased glucose metabolism in stored RBCs. Cell Physiol Biochem. 2018; 51(5):2172-84. doi: 10.1159/000495864.
  8. CrossRef PubMed
  9. Yoshida Т, Prudent M, D'alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfus. 2019;17(1):27-52. doi: 10.2450/2019.0217-18.
  10. Daraghmeh DN, Karaman R. The redox process in red blood cells: Balancing oxidants and antioxidants (Review). Antioxidants (Basel). 2024;14(1):36. doi: 10.3390/ antiox14010036.
  11. CrossRef PubMed PubMedCentral
  12. Makashova OE, Babiychuk LА, Zubova OL. Optimiza-tion of cryopreservation technique for human cord blood nucleated cells using combination of cryoprotectant DMSO and antioxidant N-acetyl-L-cysteine. Probl Cryobiol Cryomed. 2016;26(4):295-307. [Ukrainian].
  13. CrossRef
  14. Zhu Z, Fan X, Lv Y, et al. Glutamine protects rabbit spermatozoa against oxidative stress via glutathione synthesis during cryopreservation. Reprod Fertil Dev. 2017;29(11):2183-94. doi: 10.1071/RD17020.
  15. CrossRef PubMed
  16. Ramazanov VV , V olovelskaya EL, Rudenko SV . Shape modification of erythrocytes in sulfate medium. The 11th International Scientific and Practical Conference "Results of modern scientific research and development" (Jan 16-18, 2022) Barca Academy Publishing, Madrid, Spain. 2022:50-56.
  17. Lelkens CC, Noorman F, Koning JG, et al. Stability after thawing of RBCs frozen with the high- and lowglycerol method. Transfusion. 2003;43(2):157-64. doi: 10.1046/j.1537-2995.2003.00293.x.
  18. CrossRef PubMed
  19. Miller RH, Mazur P. Survival of frozen-thawed human red cells as a function of cooling and warming velocities. Cryobiology. 1976;13(4):404-14.
  20. CrossRef.1016/0011-2240(76)90096-1 PubMed
  21. Rudenko SV . Erythrocyte morphological states, phases, transitions and trajectories. Biochim Biophys Acta. 2010;1798(9): 1767. doi: 10.1016/j.bbamem.
  22. CrossRef PubMed
  23. Ramazanov VV, Rudenko SV. Shape change of eryth-rocytes during mechanical mixing and replacement of sulfate with chloride in the medium. Physiol J. 2024;70(4):72-9. [Ukrainian].
  24. CrossRef
  25. Reithmeier RA., Casey JR, Kalli AC, Sansom MS, Al-guel Y , Iwata S. Band 3, the human red cell chloride/ bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta. 2016;1858(7 Part A):1507-32. doi: 10.1016/j.bbamem.2016.03.030.
  26. CrossRef PubMed
  27. Gordiyenko OI, Anikieieva MО, Rozanova SL, Kova-lenko S Ye, Kovalenko I F. Development of a model to investigate red blood cell surface characteristics after cryopreservation. Cryo Lett. 2015;36(3):221-6.
  28. Holovati JL, Kenneth A, Wong KA, et al. The effects of cryopreservation on red blood cell microvesiculation, phosphatidylserine externalization, and CD47 expression. Transfusion. 2008;48(8):1658-68. doi: 10.1111/j.1537- 2995.2008.01735.x.
  29. CrossRef PubMed
  30. Hampton DA, Wiles C, Fabricant LJ, et al. Cryopreserved red blood cells are superior to standard liquid red blood cells. J Trauma Acute Care Surg. 2014;77(1):20-7. doi: 10.1097/TA.0000000000000268.
  31. CrossRef PubMed
  32. Zemlyanskikh NG. Regulation of asymmetric lipid distribution in the human erythrocyte membrane in the presence of glycerol and polyethylene glycol. Cytology. 2020;62(2):1-9.
  33. Ramazanov VV , V olovelskaya EL, Koptelov V A, Bonda-renko V A. Properties of erythrocytes frozen in a medium with polyethylene glycol and 1,2-propanediol. Bull Probl Biol Med. 2014;2(3):230-36. [Ukrainian].
  34. Chang A, Kim Y , Hoehn R, Jernigan P, Pritts T. Cryopre-served packed red blood cells in surgical patients: past, present, and future. Blood Transfus. 2017;15(4):341-47. doi: 10.2450/2016.0083-16.
  35. Bizjak DA, Jungen P, Bloch W, Grau M. Cryopreserva-tion of red blood cells: Effect on rheologic properties and associated metabolic and nitric oxide related parameters. Cryobiology. 2018;84:59-68. doi: 10.1016/j. cryobiol.2018.08.001.
  36. CrossRef PubMed
  37. De Loecker R, Goossens W, Van Duppen V. Osmotic effects of dilution on erythrocytes after freezing and thawing in glycerol-containing buffer. Cryobiology. 1993;30(3):279-85.
  38. CrossRef PubMed
  39. Dumaswala UJ, Zhuo L, Mahajan S, et al. Glutathione protects chemokine-scavenging and antioxidative defense functions in human RBCs. Am J Physiol Cell Physiol. 2001;280(4):C867-73.
  40. CrossRef PubMed
  41. Manten AD, Pajkrt RJ, Winter P, Jong J. Erythrocyte-bound interleukin-8 and RANTES in human endotoxemia. J Endotoxin Res. 1997;4(1):1-9.
  42. CrossRef
  43. Karsten E, Herbert BR. The emerging role of red blood cells in cytokine signalling and modulating immune cells. Blood Rev. 2020;41:100644. doi: 10.1016/j. blre.2019.100644.
  44. CrossRef PubMed
  45. Remy KE, Hall MW, Cholette J. Mechanisms of red blood cell transfusion-related immunomodulation. Transfusion. 2018;58(3):804-15. doi: 10.1111/trf.14488.
  46. CrossRef PubMed PubMedCentral
  47. McCully BH, Underwood SJ, Kiraly L, et al. The ef-fects of cryopreserved red blood cell transfusion on tissue oxygenation in obese trauma patients. J Trauma Acute Care Surg. 2018;84(1):104-11. doi: 10.1097/ TA.0000000000001717.
  48. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2026.