Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(6): 30-36


Influence of ischemic injury on post-tetanic depression of contractional force of rat gastrocnemius muscle

O. Lehedza, N. Semenuk, D. Zavodovskyi

  1. Bogomoletz Institute of Physiology of the NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz71.06.030


Abstract

Ischemia-reperfusion injury of skeletal muscles is a significant clinical problem caused by trauma, peripheral artery disease, or prolonged immobility, such as during surgical procedures. The present study aimed to examine the effect of 3 h of ischemia on post-tetanic modulation of gastrocnemius muscle contraction force in rats. Ischemia was induced by surgical clamping of the femoral artery. Muscle contractile activity was evaluated in situ using a sciatic nerve stimulation protocol that included single twitches before and after a 5-second tetanic stimulation (40 Hz). A linear mixed model (LMM) was employed to analyze changes in the ratio of the second twitch amplitude to the first (P2/P1) across 10 measurements. The LMM analysis revealed a statistically significant difference in the slope of change of the P2/P1 ratio between the groups. The estimated slope for the experimental group was -0.11 rel. un. per measurement, demonstrating a significantly faster decrease in the indicator than in the control group (-0.042). Our findings suggest that three hours of ischemia cause a substantial enhancement of post-tetanic depression and a concurrent suppression of post-tetanic potentiation mechanisms in the rat gastrocnemius muscle. These results indicate a notable impairment of excitation-contraction mechanisms and an elevated susceptibility of ischemic muscle to fatigue.

Keywords: ischemia; skeletal muscle; calf muscle; fatigue; post-tetanic potentiation; post-tetanic depression; contractile force; rat; linear mixed model

References

  1. Peng J, Deng T, Wang X, Liang J, Wu J, Li B, Lv J, Wu S, Zhong S, Yao C, Jin G. Advances in the treatment of lowerextremity ischemia-reperfusion injury. Front Pharmacol. 2025; 16:1576091. doi: 10.3389/fphar.2025.1576091.
  2. CrossRef PubMed PubMedCentral
  3. Govbakh I, Kyryk V , Ustymenko A, Rubtsov V , Tsupykov O, Bulgakova NV, Zavodovskiy DO, Sokolowska I, Maznychenko A. Stem cell therapy enhances motor activity of triceps surae muscle in mice with hereditary peripheral neuropathy. Int J Mol Sci. 2021;22(21):12026. doi:10.3390/ijms222112026.
  4. CrossRef PubMed PubMedCentral
  5. De Mario A, Gherardi G, Rizzuto R, Mammucari C. Skeletal muscle mitochondria in health and disease. Cell Calcium. 2021;94:102357. doi:10.1016/j. ceca.2021.102357.
  6. CrossRef PubMed
  7. Apichartpiyakul P, Shinlapawittayatorn K, Rerkasem K, Chattipakorn SC, Chattipakorn N. Mechanisms and interventions on acute lower limb ischemia/reperfusion injury: A review and insights from cell to clinical investigations. Ann Vascul Surg. 2022;86:452-81. doi:10.1016/j. avsg.2022.04.040.
  8. CrossRef PubMed
  9. Langen G, Warschun F, Ueberschär O, Behringer M. The interaction of post-activation potentiation and fatigue on skeletal muscle twitch torque and displacement. Front Physiol. 2025;15:1527523. doi: 10.3389/ fphys.2024.1527523.
  10. CrossRef PubMed PubMedCentral
  11. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fa-tigue: cellular mechanisms. Physiol Rev. 2008;88(1):287- 332. doi: 10.1152/physrev.00015.2007.
  12. CrossRef PubMed
  13. Cheng AJ, Jude B, Lanner JT. Intramuscular mechanisms of overtraining. Redox Biol. 2020;35:101480. doi: 10.1016/j.redox.2020.101480.
  14. CrossRef PubMed PubMedCentral
  15. Zavodovskyi D, Lehedza O, Bulgakova N, Semenuk N, Kostyukov О. The method of evoked potentials as a promising direction for the study of nociception in anesthetized animals. Fiziol Zh. 2024;70(3):65-72. doi:10.15407/fz70.03.065.
  16. CrossRef
  17. Shushuiev DI, Gorkovenko A V , Lehedza OV , Zavodovskiy DO, Kostyukov AI. Coactivation of antagonist muscles in motor tasks with primary agonist activation. Fiziol Zh. 2024;70(6):88-97. doi:10.15407/fz70.06.088.
  18. CrossRef
  19. Gilbert GE. Linear Mixed Models: A practical guide using statistical software. J Am Stat Assoc. 2008;103(481):427- 8. doi:10.1198/jasa.2008.s216.
  20. CrossRef
  21. Deely C, Tallent J, Bennett R, Woodhead A, Goodall S, Thomas K, Howatson G. Etiology and recovery of neuromuscular function following Academy Soccer Training. Front Physiol. 2022 Jun 13;13:911009. doi: 10.3389/ fphys.2022.911009.
  22. CrossRef PubMed PubMedCentral
  23. Blazevich AJ, Babault N. Post-activation potentiation ver-sus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms, and current issues. Front Physiol. 2019;10:1359. doi:10.3389/ fphys.2019.01359.
  24. CrossRef PubMed PubMedCentral
  25. Powers SK, Smuder AJ, Criswell DS. Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid Redox Sign. 2011;15(9):2519-28. doi: 10.1089/ ars.2011.3973.
  26. CrossRef PubMed PubMedCentral
  27. Zavodovskyi DO, Zay SY , Matvienko TY , Prylutskyy YI, Ritter U, Scharff P. Influence of C 60 fullerene on the ischemia-reperfusion injury in the skeletal muscle of rat limb: Mechanokinetic and biochemical analysis. Ukr Biochem J. 2018;90(6):70-81. doi:10.15407/ubj90.06.070.
  28. CrossRef
  29. Tubman LA, MacIntosh BR, Maki WA. Myosin light chain O. Lehedza, N. Semenuk, D. Zavodovskyi 36 phosphorylation and posttetanic potentiation in fatigued skeletal muscle. Pflüg Arch. 1996;431(6):882-7. doi: 10.1007/s004240050081.
  30. CrossRef PubMed
  31. Khoma OM, Zavodovs'kyǐ DA, Nozdrenko DN, Dolho-polov OV , Miroshnychenko MS. Dynamics of ischemic skeletal soleus muscle contraction in rats. Fiziol Zh. 2014;60(1):34-41. doi:10.15407/fz60.01.034.
  32. CrossRef PubMed
  33. Launikonis BS, Murphy RM, Edwards JN. Toward the roles of store-operated Ca 2+ entry in skeletal muscle. Pflüg Arch. 2010;460(5):813-23. doi: 10.1007/s00424-010-0856-7.
  34. CrossRef PubMed
  35. Debold EP. Recent insights into the molecular basis of muscular fatigue. Med Sci Sport Exe. 2012;44(8):1440- 52. doi: 10.1249/MSS.0b013e31824cfd26.
  36. CrossRef PubMed
  37. Debold EP, Longyear TJ, Turner MA. The effects of phosphate and acidosis on regulated thin-filament velocity in an in vitro motility assay. J Appl Physiol (1985). 2012;113(9):1413-22. doi:10.1152/ japplphysiol.00775.2012.
  38. CrossRef PubMed
  39. Mijailovich SM, Nedic D, Svicevic M, Stojanovic B, Walklate J, Ujfalusi Z, Geeves MA. Modeling the actin myosin ATPase cross-bridge cycle for skeletal and cardiac muscle myosin isoforms. Biophys J. 2017;112(5):984- 996. doi: 10.1016/j.bpj.2017.01.021.
  40. CrossRef PubMed PubMedCentral
  41. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229-317. doi:10.1016/B978-0-12- 394309-5.00006-7.
  42. Demirdaş E, Arslan G, Kartal H, Erol G, Özdem T, Büyük Yavuz B, Günay C, Öz B. Melatonin as a shield against skeletal muscle damage: A study on ischemia-reperfusion injury. Ulus Travma Acil Cerrahi Derg. 2025;31(2):103- 11. doi:10.14744/tjtes.2025.44890.
  43. CrossRef PubMed PubMedCentral
  44. Zavodovskiy DO, Bulgakova NV, Sokolowska I, Prylutskyy YI, Ritter U, Gonchar OO, Kostyukov AI, Vlasenko OV , Butowska K, Borowik A, Piosik J, Maznychenko A. Water-soluble pristine C 60 fullerenes attenuate isometric muscle force reduction in a rat acute inflammatory pain model. BMC Musculoskelet Dis. 2023;24(1):606. doi: 10.1186/s12891-023-06719-w.
  45. CrossRef PubMed PubMedCentral
  46. Abbate F, Van Der Velden J, Stienen GJ, De Haan A. Post-tetanic potentiation increases energy cost to a higher extent than work in rat fast skeletal muscle. J Muscle Res Cell Motil. 2001;22(8):703-10. doi: 10.1023/a:1016383025358.
  47. CrossRef.1023/A:1016383025358 PubMed
  48. Zavodovskyi D. Study of traumatic injury to limb muscles in rats and mice: a narrative review of experimental models and evaluation methods. Neurophysiology. 2025. doi:10.1007/s11062-025-09960-2. Influence of ischemic injury on post-tetanic depression of contractional force of rat gastrocnemius muscle
  49. CrossRef

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2026.