Influence of ischemic injury on post-tetanic depression of contractional force of rat gastrocnemius muscle
O. Lehedza, N. Semenuk, D. Zavodovskyi
- Bogomoletz Institute of Physiology of the NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz71.06.030

Abstract
Ischemia-reperfusion injury of skeletal muscles is a significant clinical problem caused by trauma, peripheral
artery disease, or prolonged immobility, such as during surgical procedures. The present study aimed to
examine the effect of 3 h of ischemia on post-tetanic modulation of gastrocnemius muscle contraction force
in rats. Ischemia was induced by surgical clamping of the femoral artery. Muscle contractile activity was
evaluated in situ using a sciatic nerve stimulation protocol that included single twitches before and after
a 5-second tetanic stimulation (40 Hz). A linear mixed model (LMM) was employed to analyze changes in
the ratio of the second twitch amplitude to the first (P2/P1) across 10 measurements. The LMM analysis
revealed a statistically significant difference in the slope of change of the P2/P1 ratio between the groups.
The estimated slope for the experimental group was -0.11 rel. un. per measurement, demonstrating a
significantly faster decrease in the indicator than in the control group (-0.042). Our findings suggest that
three hours of ischemia cause a substantial enhancement of post-tetanic depression and a concurrent
suppression of post-tetanic potentiation mechanisms in the rat gastrocnemius muscle. These results indicate
a notable impairment of excitation-contraction mechanisms and an elevated susceptibility of ischemic
muscle to fatigue.
Keywords:
ischemia; skeletal muscle; calf muscle; fatigue; post-tetanic potentiation; post-tetanic depression; contractile force; rat; linear mixed model
References
- Peng J, Deng T, Wang X, Liang J, Wu J, Li B, Lv J, Wu S, Zhong S, Yao C, Jin G. Advances in the treatment of lowerextremity ischemia-reperfusion injury. Front Pharmacol. 2025; 16:1576091. doi: 10.3389/fphar.2025.1576091.
CrossRef
PubMed PubMedCentral
- Govbakh I, Kyryk V , Ustymenko A, Rubtsov V , Tsupykov O, Bulgakova NV, Zavodovskiy DO, Sokolowska I, Maznychenko A. Stem cell therapy enhances motor activity of triceps surae muscle in mice with hereditary peripheral neuropathy. Int J Mol Sci. 2021;22(21):12026. doi:10.3390/ijms222112026.
CrossRef
PubMed PubMedCentral
- De Mario A, Gherardi G, Rizzuto R, Mammucari C. Skeletal muscle mitochondria in health and disease. Cell Calcium. 2021;94:102357. doi:10.1016/j. ceca.2021.102357.
CrossRef
PubMed
- Apichartpiyakul P, Shinlapawittayatorn K, Rerkasem K, Chattipakorn SC, Chattipakorn N. Mechanisms and interventions on acute lower limb ischemia/reperfusion injury: A review and insights from cell to clinical investigations. Ann Vascul Surg. 2022;86:452-81. doi:10.1016/j. avsg.2022.04.040.
CrossRef
PubMed
- Langen G, Warschun F, Ueberschär O, Behringer M. The interaction of post-activation potentiation and fatigue on skeletal muscle twitch torque and displacement. Front Physiol. 2025;15:1527523. doi: 10.3389/ fphys.2024.1527523.
CrossRef
PubMed PubMedCentral
- Allen DG, Lamb GD, Westerblad H. Skeletal muscle fa-tigue: cellular mechanisms. Physiol Rev. 2008;88(1):287- 332. doi: 10.1152/physrev.00015.2007.
CrossRef
PubMed
- Cheng AJ, Jude B, Lanner JT. Intramuscular mechanisms of overtraining. Redox Biol. 2020;35:101480. doi: 10.1016/j.redox.2020.101480.
CrossRef
PubMed PubMedCentral
- Zavodovskyi D, Lehedza O, Bulgakova N, Semenuk N, Kostyukov О. The method of evoked potentials as a promising direction for the study of nociception in anesthetized animals. Fiziol Zh. 2024;70(3):65-72. doi:10.15407/fz70.03.065.
CrossRef
- Shushuiev DI, Gorkovenko A V , Lehedza OV , Zavodovskiy DO, Kostyukov AI. Coactivation of antagonist muscles in motor tasks with primary agonist activation. Fiziol Zh. 2024;70(6):88-97. doi:10.15407/fz70.06.088.
CrossRef
- Gilbert GE. Linear Mixed Models: A practical guide using statistical software. J Am Stat Assoc. 2008;103(481):427- 8. doi:10.1198/jasa.2008.s216.
CrossRef
- Deely C, Tallent J, Bennett R, Woodhead A, Goodall S, Thomas K, Howatson G. Etiology and recovery of neuromuscular function following Academy Soccer Training. Front Physiol. 2022 Jun 13;13:911009. doi: 10.3389/ fphys.2022.911009.
CrossRef
PubMed PubMedCentral
- Blazevich AJ, Babault N. Post-activation potentiation ver-sus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms, and current issues. Front Physiol. 2019;10:1359. doi:10.3389/ fphys.2019.01359.
CrossRef
PubMed PubMedCentral
- Powers SK, Smuder AJ, Criswell DS. Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid Redox Sign. 2011;15(9):2519-28. doi: 10.1089/ ars.2011.3973.
CrossRef
PubMed PubMedCentral
- Zavodovskyi DO, Zay SY , Matvienko TY , Prylutskyy YI, Ritter U, Scharff P. Influence of C 60 fullerene on the ischemia-reperfusion injury in the skeletal muscle of rat limb: Mechanokinetic and biochemical analysis. Ukr Biochem J. 2018;90(6):70-81. doi:10.15407/ubj90.06.070.
CrossRef
- Tubman LA, MacIntosh BR, Maki WA. Myosin light chain O. Lehedza, N. Semenuk, D. Zavodovskyi 36 phosphorylation and posttetanic potentiation in fatigued skeletal muscle. Pflüg Arch. 1996;431(6):882-7. doi: 10.1007/s004240050081.
CrossRef
PubMed
- Khoma OM, Zavodovs'kyǐ DA, Nozdrenko DN, Dolho-polov OV , Miroshnychenko MS. Dynamics of ischemic skeletal soleus muscle contraction in rats. Fiziol Zh. 2014;60(1):34-41. doi:10.15407/fz60.01.034.
CrossRef
PubMed
- Launikonis BS, Murphy RM, Edwards JN. Toward the roles of store-operated Ca 2+ entry in skeletal muscle. Pflüg Arch. 2010;460(5):813-23. doi: 10.1007/s00424-010-0856-7.
CrossRef
PubMed
- Debold EP. Recent insights into the molecular basis of muscular fatigue. Med Sci Sport Exe. 2012;44(8):1440- 52. doi: 10.1249/MSS.0b013e31824cfd26.
CrossRef
PubMed
- Debold EP, Longyear TJ, Turner MA. The effects of phosphate and acidosis on regulated thin-filament velocity in an in vitro motility assay. J Appl Physiol (1985). 2012;113(9):1413-22. doi:10.1152/ japplphysiol.00775.2012.
CrossRef
PubMed
- Mijailovich SM, Nedic D, Svicevic M, Stojanovic B, Walklate J, Ujfalusi Z, Geeves MA. Modeling the actin myosin ATPase cross-bridge cycle for skeletal and cardiac muscle myosin isoforms. Biophys J. 2017;112(5):984- 996. doi: 10.1016/j.bpj.2017.01.021.
CrossRef
PubMed PubMedCentral
- Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229-317. doi:10.1016/B978-0-12- 394309-5.00006-7.
- Demirdaş E, Arslan G, Kartal H, Erol G, Özdem T, Büyük Yavuz B, Günay C, Öz B. Melatonin as a shield against skeletal muscle damage: A study on ischemia-reperfusion injury. Ulus Travma Acil Cerrahi Derg. 2025;31(2):103- 11. doi:10.14744/tjtes.2025.44890.
CrossRef
PubMed PubMedCentral
- Zavodovskiy DO, Bulgakova NV, Sokolowska I, Prylutskyy YI, Ritter U, Gonchar OO, Kostyukov AI, Vlasenko OV , Butowska K, Borowik A, Piosik J, Maznychenko A. Water-soluble pristine C 60 fullerenes attenuate isometric muscle force reduction in a rat acute inflammatory pain model. BMC Musculoskelet Dis. 2023;24(1):606. doi: 10.1186/s12891-023-06719-w.
CrossRef
PubMed PubMedCentral
- Abbate F, Van Der Velden J, Stienen GJ, De Haan A. Post-tetanic potentiation increases energy cost to a higher extent than work in rat fast skeletal muscle. J Muscle Res Cell Motil. 2001;22(8):703-10. doi: 10.1023/a:1016383025358.
CrossRef.1023/A:1016383025358
PubMed
- Zavodovskyi D. Study of traumatic injury to limb muscles in rats and mice: a narrative review of experimental models and evaluation methods. Neurophysiology. 2025. doi:10.1007/s11062-025-09960-2. Influence of ischemic injury on post-tetanic depression of contractional force of rat gastrocnemius muscle
CrossRef
|