Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(5S): 80-86


BALB/c, C57BL/6 and Wistar rats as complementary models in translational sleep research

A. O. Cherninskyi, O. V. Iegorova, V. B. Kulyk, Yu. M. Tkachenko, O. P. Maximyuk

  1. Bogomoletz Institute of Physiology, NAS of Ukraine, 01024, Kyiv, 4 Bogomoletz str.
DOI: https://doi.org/10.15407/fz71.05.080


Abstract

Choosing an appropriate rodent model is a critical prerequisite for obtaining reliable and translationally relevant data in sleep and stress research. This review compares three widely used models: BALB/c mice, C57BL/6 mice, and Wistar rats, focusing on their genetic background, systemic physiology, neurophysiological features, sleep–wake architecture, circadian rhythms, and stress- and immune-related traits. BALB/c mice are characterized by high anxiety, hyperreactive hypothalamic–pituitary–adrenal axis responses, a Th2-skewed immune profile and altered serotonergic signaling, together with a relatively flexible circadian system and shorter endogenous free-running circadian period. These features make BALB/c a convenient model for stress-induced insomnia and circadian resilience. We argue that no single model is universally optimal: species-level differences between mice and rats exceed strain-level differences between BALB/c and C57BL/6, and these should be explicitly considered. Rational selection and, when appropriate, combined use of these models can substantially improve construct validity, reproducibility and translational impact in experimental sleep research.

Keywords: sleep, BALB/c, C57BL/6, Wistar, animal models, circadian rhythms, stress, insomnia

References

  1. Lechat B, Manners J, Pinilla L, Reynolds AC, Scott H, Vena D, et al. Estimation of the global prevalence and burden of insomnia: a systematic literature review-based analysis. Sleep Med Rev. 2025 Aug;82:102121. CrossRef PubMed
  2. Wang Y, Wen Q, Luo S, Tang L, Zhan S, Cao J, et al. Phenome-wide Analysis of Diseases in Relation to Objectively Measured Sleep Traits and Comparison with Subjective Sleep Traits in 88,461 Adults. Health Data Sci. 2025;5:0161. CrossRef PubMed PubMedCentral
  3. Parhizkar S, Holtzman DM. The night's watch: Exploring how sleep protects against neurodegeneration. Neuron. 2025 Mar 19;113(6):817-837. CrossRef PubMed
  4. Zhou S, Song G, Sun H, Zhang D, Leng Y, Westover M, et al. Continuous sleep depth index annotation with deep learning yields novel digital biomarkers for sleep health. NPJ Digit Med. 2025 Apr 11;8(1):203. CrossRef PubMed PubMedCentral
  5. Flurkey K, Currer JM, Harrison DE. The mouse in biomedical research. Vol. 1. History, wild mice, and strains. 2nd ed. Elsevier; 2007.
  6. Simon M, Gk-He G. Inbred versus outbred strains: behavioral testing in mice and rats. J Pharmacol Toxicol Methods. 2018;93:67-71.
  7. Harkness JE, Wagner JE. The biology and medicine of rabbits and rodents. 4th ed. Williams & Wilkins; 1995.
  8. Beck JA, Lloyd S, Hafezparast M, et al. Genealogies of inbred mouse strains. Nat Genet. 2000;24(1):23-25. CrossRef PubMed
  9. Tuttle AH, Philip VM, Chesler EJ, Mogil JS. Comparing phenotypic variation between inbred and outbred mice. Nat Methods. 2018;15(12):994-996. CrossRef PubMed PubMedCentral
  10. Suraev A, Hleihil M, Peciña M, et al. The paradox of variability in inbred animals. Trends Neurosci. 2023;46(3):189-191.
  11. Bryant CD, Zhang J, Zha H. The C57BL/6 mouse as a model for biomedical research. In: The mouse in biomedical research. Vol. 1. 2nd ed. Elsevier; 2007. p.141-167.
  12. Vogel V, Cichon N, Kcal S, et al. Systematic review and meta-analysis of longitudinal studies comparing cognitive and affective phenotypes between C57BL/6 and BALB/c mice. Neurosci Biobehav Rev. 2018;90:21-39.
  13. Watanabe T, Inoue K, Okumura M, et al. Comparative analysis of immune responses in BALB/c versus C57BL/6 mice. J Immunol. 2007;178(1):245-251.
  14. Montgomery GT, Gentry RM, Bjoin-E S, et al. The C57BL/6J mouse strain is a model for diet-induced obesity and metabolic syndrome. J Obes. 2011;2011:850165.
  15. Ramos A. The Wistar rat: a historical perspective and its use in behavioral neuroscience. J Hist Neurosci. 2017;26(1):88-100.
  16. Wahlsten D. Agenesis of the corpus callosum and other brain defects in BALB/c mice. J Comp Neurol. 2002;452(1):72-88.
  17. Tsuchimine S, Matsuno H, O'Hashi K, Chiba S, Yoshimura A, Kunugi H, Sohya K. Comparison of physiological and behavioral responses to chronic restraint stress between C57BL/6J and BALB/c mice. Biochem Biophys Res Commun. 2020 Feb 15:S0006- 291X(20)30341-7 CrossRef PubMed
  18. Siesser WB, Zhang X, Jacobsen JP, Sotnikova TD, Gainetdinov RR, Caron MG. Tryptophan hydroxylase 2 genotype determines brain serotonin synthesis but not tissue content in C57Bl/6 and BALB/c congenic mice. Neurosci Lett. 2010 Aug 30;481(1):6-11. CrossRef PubMed PubMedCentral
  19. Tang X, Yang L, Fishback NF, Sanford LD. Differential effects of lorazepam on sleep and activity in C57BL/6J and BALB/cJ strain mice. J Sleep Res. 2009;18(3):365-373. CrossRef PubMed PubMedCentral
  20. Filipov NM, Norwood AB, Sistrunk SC. Strain-specific sensitivity to MPTP of C57BL/6 and BALB/c mice is age dependent. Neuroreport. 2009;20(7):713-717. CrossRef PubMed
  21. Turner KM, Simpson CG, Burne THJ. BALB/c mice can learn touchscreen visual discrimination and reversal tasks faster than C57BL/6 mice. Front Behav Neurosci. 2017;11:16. CrossRef PubMed PubMedCentral
  22. Heck AL, Sheng JA, Miller AM, Stover SA, Bales NJ, Tan SML, et al. Social isolation alters hypothalamic- pituitary-adrenal axis activity after chronic variable stress in male C57BL/6 mice. Stress. 2020;23(4):457-465. CrossRef PubMed PubMedCentral
  23. Hegde P, Singh K, Chaplot S, Shankaranarayana Rao BS, Chattarji S, Kutty BM, et al. Stress-induced changes in sleep and associated neuronal activity in rat hippocampus and amygdala. Neuroscience. 2008;153(1):20-30. CrossRef PubMed
  24. Garcia Y, Esquivel N. Comparison of the response of male BALB/c and C57BL/6 mice in behavioral tasks to evaluate cognitive function. Braz J Med Biol Res. 2018;51(2):e6846. CrossRef PubMed PubMedCentral
  25. Chen P, Ban W, Wang W, You Y, Yang Z. The devastating effects of sleep deprivation on memory: lessons from rodent models. Clocks Sleep. 2023;5(2):276-294. CrossRef PubMed PubMedCentral
  26. Ma K, Gu H, Li M, et al. Age-related differences in affective behaviors in mice: possible role of prefrontal cortical- hippocampal functional connectivity and metabolomic profiles. Front Aging Neurosci. 2024;16:1356086. CrossRef PubMed PubMedCentral
  27. Hawrylycz M, Baldock RA, Burger A, et al. Digital atlasing and standardization in the mouse brain. PLoS Comput Biol. 2011;7(2):e1001065. CrossRef PubMed PubMedCentral
  28. Prathab K, Ram S, Sm-A K. Impact of sleep deprivation on the central nervous system neurotransmitters and immune function in male albino rats. Al-Rafidain J Med Sci. 2024;6:12-19.
  29. Li W, Yin Y, Wang Y, et al. Establishment of a rat model with ageing insomnia induced by D-galactose and parachlorophenylalanine. Exp Ther Med. 2020;20(4):3327- 3334.
  30. Winner M, Tscher M, Karl A, et al. Comparison of agerelated decline and behavioral validity in C57BL/6 and CB6F1 mice. Sci Rep. 2024;14: 21953. doi: 10.1038/ s41598-024-73069-7
  31. Franken P, Malafosse A, Tafti M. Genetic variation in EEG activity during sleep in inbred mice. Am J Physiol. 1998 Oct;275(4):R1127-37. CrossRef PubMed
  32. Shea JL, Mochizuki T, Sagvaag V, Aspevik T, Bjorkum AA, Datta S. Rapid eye movement (REM) sleep homeostatic regulatory processes in the rat: changes in the sleep-wake stages and electroencephalographic power spectra. Brain Res. 2008;1213:48-56. CrossRef PubMed PubMedCentral
  33. Meerlo P, Sgoifo A, Suchecki D. Restricted and disrupted sleep: effects on autonomic function, neuroendocrine systems and stress. Sleep Med Rev. 2008;12(3):197-210. CrossRef PubMed
  34. André ES, Bruno-Neto R, Valle AC, Timo-Iaria C. The sleep-wakefulness cycle of Wistar rats with spontaneous absence-like epilepsy. Acta Sci Biol Sci. 2015;37(3):367-376. CrossRef
  35. Aydin-Abidin S, Yildirim M, Abidin I, Akca M, Cansu A. Comparison of focally induced epileptiform activities in C57BL/6 and BALB/c mice by using in vivo EEG recording. Epilepsia. 2011;52(10):1851-1859. CrossRef PubMed
  36. Schwartz MD, Wotus C, Liu T, et al. Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains. J Neurosci. 1990;10(11):3685-3694. CrossRef PubMed PubMedCentral
  37. Ma C, Li H, Li W, Yang G, Chen L. Adaptive differences in cellular and behavioral responses to circadian disruption between C57BL/6 and BALB/c strains. Am J Physiol Regul Integr Comp Physiol. 2022;322(5):R441-R452.
  38. Trotter DL, Cao M, Huitron-Resendiz S, et al. Genetic variation in sleep-wake responses to acute and chronic sleep disruption in mice. Sleep. 2024;47(7):zsae083. doi: 1093/sleep/zsae083 CrossRef PubMed
  39. Franken P. A critical review of the function of sleep homeostasis. Sleep. 2009;32(10):1259-1261.
  40. Pawlyk AC, Morrison AR, Ross RJ, Brennan FX. Stress-induced changes in sleep in rodents: models and mechanisms. Neurosci Biobehav Rev. 2008;32(1): 99-117. CrossRef PubMed PubMedCentral
  41. Bjorness TE, Kelly CL, Gao T, Poffenberger V, Greene RW. Control and function of the homeostatic sleep response by adenosine A1 receptors. J Neurosci. 2009;29(5):1267-1276. CrossRef PubMed PubMedCentral
  42. Peña-Escudero C, Priego-Fernández S, Caba M, Rodríguez-Alba JC, Corona-Morales AA, García-García F. Effect of a hedonic stimulus on the sleep architecture of male Wistar rats. Sleep Sci. 2023;16(3):e329-e334. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.