|
|
|
|
Acute and chronic animal models of epileptic seizures in vivo and in vitro
M. Klymenko, D. Isaev
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz71.05.050

Abstract
Epilepsy is a complex brain disorder that develops as a consequence of various structural and metabolic brain
changes and is associated with excessive neuronal hypersynchronous activity. Millions of people struggle with
epilepsy, while antiepileptic medications successfully manage seizures in roughly 70% of patients. Clinical
studies in humans provide limited insight into the complex mechanisms responsible for epileptogenesis
and seizure generation, especially in temporal lobe epilepsy (TLE), which is often pharmacoresistant. The
comprehension of TLE pathophysiogenesis primarily depends on status epilepticus (SE) models, such as
the pilocarpine model. The use of appropriate animal models is crucial for investigating the molecular
mechanisms underlying epileptogenesis and for evaluating the efficacy of new antiepileptic drugs. In
this review, we summarize the most frequently used models of acute seizures induced by alterations in the
extracellular ion composition, pharmacological interventions, and electrical stimulation. Chronic models
of epilepsy, induced by chemoconvulsants and tetanic stimulations, were also examined. We analyzed the
key advantages and distinguishing features of various in vivo and in vitro animal models, also highlighting
parallels and differences between the models and the human condition.
Keywords:
hippocampus, epilepsy, seizures, epilepsy models, in vitro models, in vivo models, animal models, epileptogenesis, temporal lobe epilepsy, pilocarpine
References
- Kalilani L, Sun X, Pelgrims B, Noack‐Rink M, Villanueva V. The epidemiology of drug‐resistant epilepsy: A systematic review and meta‐analysis. Epilepsia. 2018;59(12):2179-93. doi:10.1111/epi.14596. PubMed
- Wang Y, Wei P, Yan F, Luo Y, Zhao G. Animal Models of Epilepsy: A Phenotype-oriented Review. Aging Dis. 2022;13(1):215-31. doi:10.14336/AD.2021.0723. PubMed PubMedCentral
- Heuzeroth H, Wawra M, Fidzinski P, Dag R, Holtkamp M. The 4-Aminopyridine Model of Acute Seizures in vitro Elucidates Efficacy of New Antiepileptic Drugs. Front Neurosci. 2019;13:677. doi:10.3389/fnins.2019.00677. PubMed PubMedCentral
- Zhang M. Circuits underlying hyperexcitability and epilepsy in the piriform cortex [dissertation]. Australian National University; 2025.
- Urbańska SM et al. Epilepsy diagnosis and treatment in children—new hopes and challenges. J Pre Clin Clin Res. 2024;1(18):40-9. doi:10.26444/jpccr/185469
- Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery of new AEDs. Seizure. 2011;20(5):359-68. doi:10.1016/j.seizure.2011.01.003. PubMed
- Kandratavicius L et al. Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat. 2014;1693. doi:10.2147/NDT.S50371. PubMed PubMedCentral
- Rubio C et al. In Vivo Experimental Models of Epilepsy. CNSAMC. 2010;10(4):298-309. doi:10.2174/187152410793429746. PubMed
- Avoli M, Jefferys JGR. Models of drug-induced epileptiform synchronization in vitro. J Neurosci Methods. 2016;260:26-32. doi:10.1016/j.jneumeth.2015.10.006. PubMed PubMedCentral
- Antmen FM et al. The Metabolic Profile of Plasma During Epileptogenesis in a Rat Model of Lithium-Pilocarpine–Induced Temporal Lobe Epilepsy. Mol Neurobiol. 2025;62(6):7469-83. doi:10.1007/s12035-025-04719-6. PubMed PubMedCentral
- Kothari M et al. A Comprehensive Review on Understanding Magnesium Disorders. Cureus. 2024;16(9):e68385. doi:10.7759/cureus.68385
- Ahmed F et al. Relation of Serum Magnesium Level in Adult Patients with Idiopathic Generalized Epilepsy. Mymensingh Med J. 2024;33(4):996-1001.
- Hussain S et al. Electrolyte Imbalance in Seizure Patients Presenting to the Emergency Room. PJMD. 2025;14(3):51-7. doi:10.36283/ziun-pjmd14-3/009
- Baram TZ, Snead OC. Bicuculline induced seizures in infant rats. Brain Res Dev Brain Res. 1990;57(2):291-5. doi:10.1016/0165-3806(90)90055-4. PubMed
- Voskuyl RA, Albus H. Spontaneous epileptiform discharges in hippocampal slices induced by 4-AP. Brain Res. 1985;342(1):54-66. doi:10.1016/0006-8993(85)91352-6. PubMed
- Nardone R, Brigo F, Trinka E. Acute Symptomatic Seizures Caused by Electrolyte Disturbances. J Clin Neurol. 2016;12(1):21-33. doi:10.3988/jcn.2016.12.1.21. PubMed PubMedCentral
- Herman MA et al. Tonic GABAA receptor conductance inhibited by μ-opioid receptors. J Neurophysiol. 2012;107(3):1022-31. doi:10.1152/jn.00853.2011. PubMed PubMedCentral
- Ueno S et al. Bicuculline and gabazine as allosteric inhibitors of GABAA. J Neurosci. 1997;17(2):625-34. doi:10.1523/JNEUROSCI.17-02-00625.1997. PubMed PubMedCentral
- Saft C, Speckmann EJ. Effects of cobalt, manganese and magnesium on bicuculline-induced activity. Brain Res. 2020;1732:146684. doi:10.1016/j.brainres.2020.146684. PubMed
- Sidorenko VG, Veselovsky NS. Effect of Bicuculline on GABA currents in rat DRG neurons. Neurophysiology. 2000;32(4):266-70. doi:10.1023/A:1005260225624
- Müller S et al. Gabazine-induced epileptiform activity involves proteasomal degradation of KCa2.2. Neurobiol Dis. 2018;112:79-84. doi:10.1016/j.nbd.2018.01.005. PubMed
- De Feo MR et al. Bicuculline- and allylglycine-induced epilepsy in developing rats. Exp Neurol. 1985;90(2):411-21. doi:10.1016/0014-4886(85)90030-5. PubMed
- Löscher W et al. GABA in CSF of children with febrile convulsions. Epilepsia. 1981;22(6):697-702. doi:10.1111/j.1528-1157.1981.tb04143.x. PubMed
- Vicente-Silva W et al. Sakuranetin exerts anticonvulsant effects. Fundam Clin Pharmacol. 2022;36(4):663-73. doi:10.1111/fcp.12768. PubMed
- Fueta Y, Avoli M. TEA-induced epileptiform activity. Dev Brain Res. 1993;72(1):51-8. doi:10.1016/0165-3806(93)90158-7. PubMed
- Bagetta G, Nisticó G, Dolly JO. α-dendrotoxin-induced seizures. Neurosci Lett. 1992;139(1):34-. doi:10.1016/0304-3940(92)90851-W. PubMed
- Khammy MM et al. 4-AP as a Kv inhibitor. Br J Pharmacol. 2018;175(3):501-16. doi:10.1111/bph.14097. PubMed PubMedCentral
- Smith DO et al. Kv2.1 and Kv4.3 in progenitor cells. PLoS One. 2008;3(2):e1604. doi:10.1371/journal.pone.0001604. PubMed PubMedCentral
- Hoffman DA et al. K+ channel regulation of dendritic signaling. Nature. 1997;387:869-75. doi:10.1038/43119. PubMed
- Chesnut TJ, Swann JW. Epileptiform activity induced by 4-AP in immature hippocampus. Epilepsy Res. 1988;2(3):187-95. doi:10.1016/0920-1211(88)90056-3. PubMed
- Szente M, Baranyi A. Mechanism of aminopyridine seizures. Brain Res. 1987;413(2):368-73. doi:10.1016/0006-8993(87)91031-6. PubMed
- Isaev D et al. Surface charge in low-Mg seizure model. J Neurophysiol. 2012;107(1):417-23. doi:10.1152/jn.00574.2011. PubMed PubMedCentral
- Mayer ML et al. Voltage-dependent block of NMDA by Mg2+. Nature. 1984;309:261-3. doi:10.1038/309261a0. PubMed
- Mody I et al. Low Mg2+ induces epileptiform activity. J Neurophysiol. 1987;57(3):869-88. doi:10.1152/jn.1987.57.3.869. PubMed
- Tancredi V et al. Low magnesium epileptogenesis. Brain Res. 1990;511(2):280-90. doi:10.1016/0006-8993(90)90173-9. PubMed
- Anderson WW et al. Magnesium-free medium activates seizure-like events. Brain Res. 1986;398:215-9. doi:10.1016/0006-8993(86)91274-6. PubMed
- Derchansky M et al. Model of spontaneous seizures in intact hippocampus. Hippocampus. 2004;14:935-47. doi:10.1002/hipo.20007. PubMed
- Perez-Velazquez J et al. Gap junction modulation in Ca2+-free bursts. J Neurosci. 1994;14(7):4308-17. doi:10.1523/JNEUROSCI.14-07-04308.1994. PubMed PubMedCentral
- Chang Y et al. Cadmium exposure and seizures through ferroptosis. J Hazard Mater. 2024;480:135814. doi:10.1016/j.jhazmat.2024.135814. PubMed
- Bikson M et al. Zero-Ca2+ burst modulation. J Neurophysiol. 1999;82(5):2262-70. doi:10.1152/jn.1999.82.5.2262. PubMed
- Feng Z, Durand DM. Low-calcium epileptiform activity in vivo. J Neurophysiol. 2003;90(4):2253-60. doi:10.1152/jn.00241.2003. PubMed
- Matsushita MT, Xia Z. Cadmium inhibits Ca2+ in CA1 neurons. Toxicol Sci. 2024;200(1):199-212. doi:10.1093/toxsci/kfae048. PubMed PubMedCentral
- Mahmoud F et al. Cadmium effects on hippocampus; role of L-carnitine. J Curr Med Res Pract. 2019;4(3):240. doi:10.4103/JCMRP.JCMRP_60_18
- Bikson M et al. Depolarization block during seizures. J Neurophysiol. 2003;90(4):2402-8. doi:10.1152/jn.00467.2003. PubMed
- Konnerth A et al. Nonsynaptic epileptogenesis in low Ca2+. J Neurophysiol. 1986;56:409-23. doi:10.1152/jn.1986.56.2.409. PubMed
- Yaari Y, Jensen MS. Nonsynaptic Mechanisms and Interictal–Ictal Transitions. In: Mechanisms of Epileptogenesis. Springer; 1988. doi:10.1007/978-1-4684-5556-4_11
- Castel-Branco MM et al. MES model in AED assessment. Methods Find Exp Clin Pharmacol. 2009;31(2):101. doi:10.1358/mf.2009.31.2.1338414. PubMed
- Putnam TJ, Merritt HH. Anticonvulsant properties of phenyl derivatives. Science. 1937;85:525-6. doi:10.1126/science.85.2213.525. PubMed
- Bettio L et al. PK/PD of antiseizure drugs in MES. IJMS. 2025;26(15):7029. doi:10.3390/ijms26157029. PubMed PubMedCentral
- Yuskaitis CJ et al. Factors influencing PTZ seizure paradigm. Ann Clin Transl Neurol. 2021;8(7):1388-97. doi:10.1002/acn3.51375. PubMed PubMedCentral
- Shimada T, Yamagata K. PTZ kindling mouse model. JoVE. 2018;(136):56573. doi:10.3791/56573. PubMed PubMedCentral
- Monteiro ÁB et al. Pentylenetetrazole: a review. Neurochem Int. 2024;180:105841. doi:10.1016/j.neuint.2024.105841. PubMed
- Becker AJ. Animal models of acquired epilepsy. Neuropathol Appl Neurobiol. 2018;44:112-29. doi:10.1111/nan.12451. PubMed
- Pitkänen A et al. Epileptogenesis. Cold Spring Harb Perspect Med. 2015;5:a022822. doi:10.1101/cshperspect.a022822. PubMed PubMedCentral
- Rusina E, Bernard C, Williamson A. Kainic acid models. eNeuro. 2021;8(2):ENEURO.0337-20.2021. doi:10.1523/ENEURO.0337-20.2021. PubMed PubMedCentral
- Lévesque M, Avoli M. Kainic acid model. Neurosci Biobehav Rev. 2013;37:2887-99. doi:10.1016/j.neubiorev.2013.10.011. PubMed PubMedCentral
- Gorter JA et al. Insights from kindling and SE models. J Neurosci Methods. 2016;260:96-108. doi:10.1016/j.jneumeth.2015.03.025. PubMed
- Herberg LJ, Watkins PJ. Seizures induced by hypothalamic stimulation. Nature. 1966;209:515-6. doi:10.1038/209515a0. PubMed
- Goddard GV. Development of epileptic seizures through brain stimulation. Nature. 1967;214:1020-1. doi:10.1038/2141020a0. PubMed
- Ben-Ari Y, Lagowska J. Epileptogenic action of intraamygdaloid KA. C R Acad Sci D. 1978;287:813-6.
- Rattka M et al. Intrahippocampal kainate model revisited. Epilepsy Res. 2013;103:135-52. doi:10.1016/j.eplepsyres.2012.09.015. PubMed
- Vasović D et al. Dose-dependent pilocarpine seizures. Medicina. 2024;60(10):1579. doi:10.3390/medicina60101579. PubMed PubMedCentral
- Turski WA et al. Limbic seizures produced by pilocarpine. Behav Brain Res. 1983;9:315-35. doi:10.1016/0166-4328(83)90136-5. PubMed
- Scorza FA et al. Pilocarpine model: what have we learned? An Acad Bras Cienc. 2009;81:345-65. doi:10.1590/S0001-37652009000300003. PubMed
- Curia G et al. Pilocarpine model of TLE. J Neurosci Methods. 2008;172:143-57. doi:10.1016/j.jneumeth.2008.04.019. PubMed PubMedCentral
- Ahmed Juvale II, Che Has AT. Evolution of the pilocarpine model. Heliyon. 2020;6:e04557. doi:10.1016/j.heliyon.2020.e04557. PubMed PubMedCentral
- Racine RJ. Modification of seizure activity: motor seizures. Electroencephalogr Clin Neurophysiol. 1972;32:281-94. doi:10.1016/0013-4694(72)90177-0. PubMed
- Jiang M, Wang Y. Refinement of pilocarpine SE model. Front Neurosci. 2025;19:1592014. doi:10.3389/fnins.2025.1592014. PubMed PubMedCentral
- Covolan L, Mello LEAM. Neuronal injury after pilocarpine/kainate SE. Epilepsy Res. 2000;39:133-52. doi:10.1016/S0920-1211(99)00119-9. PubMed
- Vezzani A. What does pilocarpine model mimic? Epilepsy Curr. 2009;9:146-8. doi:10.1111/j.1535-7511.2009.01323.x. PubMed PubMedCentral
- Glien M et al. Repeated low-dose pilocarpine. Epilepsy Res. 2001;46:111-9. doi:10.1016/S0920-1211(01)00272-8. PubMed
- Marchi N et al. Blocking inflammation reduces SE severity. Neurobiol Dis. 2009;33:171-81. doi:10.1016/j.nbd.2008.10.002. PubMed PubMedCentral
- Kuruvilla PK. Lithium toxicity as NCSE. Aust N Z J Psychiatry. 2001;35:852. doi:10.1046/j.1440-1614.2001.0971a.x. PubMed
|
|
|
|
|
|
|