Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(5S): 50-61


Acute and chronic animal models of epileptic seizures in vivo and in vitro

M. Klymenko, D. Isaev

  1. Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz71.05.050


Abstract

Epilepsy is a complex brain disorder that develops as a consequence of various structural and metabolic brain changes and is associated with excessive neuronal hypersynchronous activity. Millions of people struggle with epilepsy, while antiepileptic medications successfully manage seizures in roughly 70% of patients. Clinical studies in humans provide limited insight into the complex mechanisms responsible for epileptogenesis and seizure generation, especially in temporal lobe epilepsy (TLE), which is often pharmacoresistant. The comprehension of TLE pathophysiogenesis primarily depends on status epilepticus (SE) models, such as the pilocarpine model. The use of appropriate animal models is crucial for investigating the molecular mechanisms underlying epileptogenesis and for evaluating the efficacy of new antiepileptic drugs. In this review, we summarize the most frequently used models of acute seizures induced by alterations in the extracellular ion composition, pharmacological interventions, and electrical stimulation. Chronic models of epilepsy, induced by chemoconvulsants and tetanic stimulations, were also examined. We analyzed the key advantages and distinguishing features of various in vivo and in vitro animal models, also highlighting parallels and differences between the models and the human condition.

Keywords: hippocampus, epilepsy, seizures, epilepsy models, in vitro models, in vivo models, animal models, epileptogenesis, temporal lobe epilepsy, pilocarpine

References

  1. Kalilani L, Sun X, Pelgrims B, Noack‐Rink M, Villanueva V. The epidemiology of drug‐resistant epilepsy: A systematic review and meta‐analysis. Epilepsia. 2018;59(12):2179-93. doi:10.1111/epi.14596. PubMed
  2. Wang Y, Wei P, Yan F, Luo Y, Zhao G. Animal Models of Epilepsy: A Phenotype-oriented Review. Aging Dis. 2022;13(1):215-31. doi:10.14336/AD.2021.0723. PubMed PubMedCentral
  3. Heuzeroth H, Wawra M, Fidzinski P, Dag R, Holtkamp M. The 4-Aminopyridine Model of Acute Seizures in vitro Elucidates Efficacy of New Antiepileptic Drugs. Front Neurosci. 2019;13:677. doi:10.3389/fnins.2019.00677. PubMed PubMedCentral
  4. Zhang M. Circuits underlying hyperexcitability and epilepsy in the piriform cortex [dissertation]. Australian National University; 2025.
  5. Urbańska SM et al. Epilepsy diagnosis and treatment in children—new hopes and challenges. J Pre Clin Clin Res. 2024;1(18):40-9. doi:10.26444/jpccr/185469
  6. Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery of new AEDs. Seizure. 2011;20(5):359-68. doi:10.1016/j.seizure.2011.01.003. PubMed
  7. Kandratavicius L et al. Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat. 2014;1693. doi:10.2147/NDT.S50371. PubMed PubMedCentral
  8. Rubio C et al. In Vivo Experimental Models of Epilepsy. CNSAMC. 2010;10(4):298-309. doi:10.2174/187152410793429746. PubMed
  9. Avoli M, Jefferys JGR. Models of drug-induced epileptiform synchronization in vitro. J Neurosci Methods. 2016;260:26-32. doi:10.1016/j.jneumeth.2015.10.006. PubMed PubMedCentral
  10. Antmen FM et al. The Metabolic Profile of Plasma During Epileptogenesis in a Rat Model of Lithium-Pilocarpine–Induced Temporal Lobe Epilepsy. Mol Neurobiol. 2025;62(6):7469-83. doi:10.1007/s12035-025-04719-6. PubMed PubMedCentral
  11. Kothari M et al. A Comprehensive Review on Understanding Magnesium Disorders. Cureus. 2024;16(9):e68385. doi:10.7759/cureus.68385
  12. Ahmed F et al. Relation of Serum Magnesium Level in Adult Patients with Idiopathic Generalized Epilepsy. Mymensingh Med J. 2024;33(4):996-1001.
  13. Hussain S et al. Electrolyte Imbalance in Seizure Patients Presenting to the Emergency Room. PJMD. 2025;14(3):51-7. doi:10.36283/ziun-pjmd14-3/009
  14. Baram TZ, Snead OC. Bicuculline induced seizures in infant rats. Brain Res Dev Brain Res. 1990;57(2):291-5. doi:10.1016/0165-3806(90)90055-4. PubMed
  15. Voskuyl RA, Albus H. Spontaneous epileptiform discharges in hippocampal slices induced by 4-AP. Brain Res. 1985;342(1):54-66. doi:10.1016/0006-8993(85)91352-6. PubMed
  16. Nardone R, Brigo F, Trinka E. Acute Symptomatic Seizures Caused by Electrolyte Disturbances. J Clin Neurol. 2016;12(1):21-33. doi:10.3988/jcn.2016.12.1.21. PubMed PubMedCentral
  17. Herman MA et al. Tonic GABAA receptor conductance inhibited by μ-opioid receptors. J Neurophysiol. 2012;107(3):1022-31. doi:10.1152/jn.00853.2011. PubMed PubMedCentral
  18. Ueno S et al. Bicuculline and gabazine as allosteric inhibitors of GABAA. J Neurosci. 1997;17(2):625-34. doi:10.1523/JNEUROSCI.17-02-00625.1997. PubMed PubMedCentral
  19. Saft C, Speckmann EJ. Effects of cobalt, manganese and magnesium on bicuculline-induced activity. Brain Res. 2020;1732:146684. doi:10.1016/j.brainres.2020.146684. PubMed
  20. Sidorenko VG, Veselovsky NS. Effect of Bicuculline on GABA currents in rat DRG neurons. Neurophysiology. 2000;32(4):266-70. doi:10.1023/A:1005260225624
  21. Müller S et al. Gabazine-induced epileptiform activity involves proteasomal degradation of KCa2.2. Neurobiol Dis. 2018;112:79-84. doi:10.1016/j.nbd.2018.01.005. PubMed
  22. De Feo MR et al. Bicuculline- and allylglycine-induced epilepsy in developing rats. Exp Neurol. 1985;90(2):411-21. doi:10.1016/0014-4886(85)90030-5. PubMed
  23. Löscher W et al. GABA in CSF of children with febrile convulsions. Epilepsia. 1981;22(6):697-702. doi:10.1111/j.1528-1157.1981.tb04143.x. PubMed
  24. Vicente-Silva W et al. Sakuranetin exerts anticonvulsant effects. Fundam Clin Pharmacol. 2022;36(4):663-73. doi:10.1111/fcp.12768. PubMed
  25. Fueta Y, Avoli M. TEA-induced epileptiform activity. Dev Brain Res. 1993;72(1):51-8. doi:10.1016/0165-3806(93)90158-7. PubMed
  26. Bagetta G, Nisticó G, Dolly JO. α-dendrotoxin-induced seizures. Neurosci Lett. 1992;139(1):34-. doi:10.1016/0304-3940(92)90851-W. PubMed
  27. Khammy MM et al. 4-AP as a Kv inhibitor. Br J Pharmacol. 2018;175(3):501-16. doi:10.1111/bph.14097. PubMed PubMedCentral
  28. Smith DO et al. Kv2.1 and Kv4.3 in progenitor cells. PLoS One. 2008;3(2):e1604. doi:10.1371/journal.pone.0001604. PubMed PubMedCentral
  29. Hoffman DA et al. K+ channel regulation of dendritic signaling. Nature. 1997;387:869-75. doi:10.1038/43119. PubMed
  30. Chesnut TJ, Swann JW. Epileptiform activity induced by 4-AP in immature hippocampus. Epilepsy Res. 1988;2(3):187-95. doi:10.1016/0920-1211(88)90056-3. PubMed
  31. Szente M, Baranyi A. Mechanism of aminopyridine seizures. Brain Res. 1987;413(2):368-73. doi:10.1016/0006-8993(87)91031-6. PubMed
  32. Isaev D et al. Surface charge in low-Mg seizure model. J Neurophysiol. 2012;107(1):417-23. doi:10.1152/jn.00574.2011. PubMed PubMedCentral
  33. Mayer ML et al. Voltage-dependent block of NMDA by Mg2+. Nature. 1984;309:261-3. doi:10.1038/309261a0. PubMed
  34. Mody I et al. Low Mg2+ induces epileptiform activity. J Neurophysiol. 1987;57(3):869-88. doi:10.1152/jn.1987.57.3.869. PubMed
  35. Tancredi V et al. Low magnesium epileptogenesis. Brain Res. 1990;511(2):280-90. doi:10.1016/0006-8993(90)90173-9. PubMed
  36. Anderson WW et al. Magnesium-free medium activates seizure-like events. Brain Res. 1986;398:215-9. doi:10.1016/0006-8993(86)91274-6. PubMed
  37. Derchansky M et al. Model of spontaneous seizures in intact hippocampus. Hippocampus. 2004;14:935-47. doi:10.1002/hipo.20007. PubMed
  38. Perez-Velazquez J et al. Gap junction modulation in Ca2+-free bursts. J Neurosci. 1994;14(7):4308-17. doi:10.1523/JNEUROSCI.14-07-04308.1994. PubMed PubMedCentral
  39. Chang Y et al. Cadmium exposure and seizures through ferroptosis. J Hazard Mater. 2024;480:135814. doi:10.1016/j.jhazmat.2024.135814. PubMed
  40. Bikson M et al. Zero-Ca2+ burst modulation. J Neurophysiol. 1999;82(5):2262-70. doi:10.1152/jn.1999.82.5.2262. PubMed
  41. Feng Z, Durand DM. Low-calcium epileptiform activity in vivo. J Neurophysiol. 2003;90(4):2253-60. doi:10.1152/jn.00241.2003. PubMed
  42. Matsushita MT, Xia Z. Cadmium inhibits Ca2+ in CA1 neurons. Toxicol Sci. 2024;200(1):199-212. doi:10.1093/toxsci/kfae048. PubMed PubMedCentral
  43. Mahmoud F et al. Cadmium effects on hippocampus; role of L-carnitine. J Curr Med Res Pract. 2019;4(3):240. doi:10.4103/JCMRP.JCMRP_60_18
  44. Bikson M et al. Depolarization block during seizures. J Neurophysiol. 2003;90(4):2402-8. doi:10.1152/jn.00467.2003. PubMed
  45. Konnerth A et al. Nonsynaptic epileptogenesis in low Ca2+. J Neurophysiol. 1986;56:409-23. doi:10.1152/jn.1986.56.2.409. PubMed
  46. Yaari Y, Jensen MS. Nonsynaptic Mechanisms and Interictal–Ictal Transitions. In: Mechanisms of Epileptogenesis. Springer; 1988. doi:10.1007/978-1-4684-5556-4_11
  47. Castel-Branco MM et al. MES model in AED assessment. Methods Find Exp Clin Pharmacol. 2009;31(2):101. doi:10.1358/mf.2009.31.2.1338414. PubMed
  48. Putnam TJ, Merritt HH. Anticonvulsant properties of phenyl derivatives. Science. 1937;85:525-6. doi:10.1126/science.85.2213.525. PubMed
  49. Bettio L et al. PK/PD of antiseizure drugs in MES. IJMS. 2025;26(15):7029. doi:10.3390/ijms26157029. PubMed PubMedCentral
  50. Yuskaitis CJ et al. Factors influencing PTZ seizure paradigm. Ann Clin Transl Neurol. 2021;8(7):1388-97. doi:10.1002/acn3.51375. PubMed PubMedCentral
  51. Shimada T, Yamagata K. PTZ kindling mouse model. JoVE. 2018;(136):56573. doi:10.3791/56573. PubMed PubMedCentral
  52. Monteiro ÁB et al. Pentylenetetrazole: a review. Neurochem Int. 2024;180:105841. doi:10.1016/j.neuint.2024.105841. PubMed
  53. Becker AJ. Animal models of acquired epilepsy. Neuropathol Appl Neurobiol. 2018;44:112-29. doi:10.1111/nan.12451. PubMed
  54. Pitkänen A et al. Epileptogenesis. Cold Spring Harb Perspect Med. 2015;5:a022822. doi:10.1101/cshperspect.a022822. PubMed PubMedCentral
  55. Rusina E, Bernard C, Williamson A. Kainic acid models. eNeuro. 2021;8(2):ENEURO.0337-20.2021. doi:10.1523/ENEURO.0337-20.2021. PubMed PubMedCentral
  56. Lévesque M, Avoli M. Kainic acid model. Neurosci Biobehav Rev. 2013;37:2887-99. doi:10.1016/j.neubiorev.2013.10.011. PubMed PubMedCentral
  57. Gorter JA et al. Insights from kindling and SE models. J Neurosci Methods. 2016;260:96-108. doi:10.1016/j.jneumeth.2015.03.025. PubMed
  58. Herberg LJ, Watkins PJ. Seizures induced by hypothalamic stimulation. Nature. 1966;209:515-6. doi:10.1038/209515a0. PubMed
  59. Goddard GV. Development of epileptic seizures through brain stimulation. Nature. 1967;214:1020-1. doi:10.1038/2141020a0. PubMed
  60. Ben-Ari Y, Lagowska J. Epileptogenic action of intraamygdaloid KA. C R Acad Sci D. 1978;287:813-6.
  61. Rattka M et al. Intrahippocampal kainate model revisited. Epilepsy Res. 2013;103:135-52. doi:10.1016/j.eplepsyres.2012.09.015. PubMed
  62. Vasović D et al. Dose-dependent pilocarpine seizures. Medicina. 2024;60(10):1579. doi:10.3390/medicina60101579. PubMed PubMedCentral
  63. Turski WA et al. Limbic seizures produced by pilocarpine. Behav Brain Res. 1983;9:315-35. doi:10.1016/0166-4328(83)90136-5. PubMed
  64. Scorza FA et al. Pilocarpine model: what have we learned? An Acad Bras Cienc. 2009;81:345-65. doi:10.1590/S0001-37652009000300003. PubMed
  65. Curia G et al. Pilocarpine model of TLE. J Neurosci Methods. 2008;172:143-57. doi:10.1016/j.jneumeth.2008.04.019. PubMed PubMedCentral
  66. Ahmed Juvale II, Che Has AT. Evolution of the pilocarpine model. Heliyon. 2020;6:e04557. doi:10.1016/j.heliyon.2020.e04557. PubMed PubMedCentral
  67. Racine RJ. Modification of seizure activity: motor seizures. Electroencephalogr Clin Neurophysiol. 1972;32:281-94. doi:10.1016/0013-4694(72)90177-0. PubMed
  68. Jiang M, Wang Y. Refinement of pilocarpine SE model. Front Neurosci. 2025;19:1592014. doi:10.3389/fnins.2025.1592014. PubMed PubMedCentral
  69. Covolan L, Mello LEAM. Neuronal injury after pilocarpine/kainate SE. Epilepsy Res. 2000;39:133-52. doi:10.1016/S0920-1211(99)00119-9. PubMed
  70. Vezzani A. What does pilocarpine model mimic? Epilepsy Curr. 2009;9:146-8. doi:10.1111/j.1535-7511.2009.01323.x. PubMed PubMedCentral
  71. Glien M et al. Repeated low-dose pilocarpine. Epilepsy Res. 2001;46:111-9. doi:10.1016/S0920-1211(01)00272-8. PubMed
  72. Marchi N et al. Blocking inflammation reduces SE severity. Neurobiol Dis. 2009;33:171-81. doi:10.1016/j.nbd.2008.10.002. PubMed PubMedCentral
  73. Kuruvilla PK. Lithium toxicity as NCSE. Aust N Z J Psychiatry. 2001;35:852. doi:10.1046/j.1440-1614.2001.0971a.x. PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.