Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(5S): 33-41


From classic electrophysiology to systems biology: the evolving role of the in situ rat hindlimb neuromuscular preparation

D. Zavodovskyi, N. Semenuk, O. Lehedza

  1. Bogomoletz Institute of Physiology of the NAS of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz71.05.033


Abstract

The in situ rat hindlimb neuromuscular preparation serves as a pivotal experimental model in physiology and biomedical research, enabling detailed investigations of skeletal muscle contractile function and neuromuscular transmission under conditions closely resembling the physiological state. This review article systematically consolidates knowledge of this model, tracing its evolution from inception to its contemporary multifaceted applications and directions for future development. The first section examines the historical prerequisites that facilitated the development of this method, which established the foundations for understanding the electrical nature of nerve impulses and synaptic transmission. The second section is dedicated to analyzing the contemporary utilization of this preparation in global scientific practice. It explores its role in detail, encompassing the study of fundamental mechanisms of muscle contraction and fatigue, the modeling of peripheral neuropathies, traumatic nerve and muscle injuries, and the investigation of muscle dysfunction in systemic pathologies such as sepsis, diabetes mellitus, and spinal cord injury. Specific attention is given to the evolution of the methodology and its integration with modern electrophysiological approaches. The third section analyzes the prospects for future applications of the model. Its designation as a “gold standard” for the preclinical evaluation of novel therapeutic strategies is substantiated. New opportunities are discussed, including the integration of this model with nanotechnologies to study the impact of nanoparticles on NO-dependent regulation of muscle contraction, as well as its integration with systems biology technologies for a comprehensive analysis of neuromuscular function. The article emphasizes that, despite its classical status, the in situ rat hindlimb neuromuscular preparation remains an indispensable and relevant tool for addressing both fundamental and applied challenges in modern physiology and medicine. Keywords: neuromuscular preparation, skeletal muscle, contractile force, rat, neuromuscular transmission, muscle fatigue, electrophysiology, review.

Keywords: neuromuscular preparation, skeletal muscle, contractile force, rat, neuromuscular transmission, muscle fatigue, electrophysiology, review

References

  1. Piccolino M. Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain Res Bull. 1998;46(5):381-407. doi:10.1016/S0361-9230(98)00026-4. PubMed
  2. Finkelstein G. Emil du Bois-Reymond: neuroscience, self, and society in nineteenth-century Germany. MIT Press; 2013. doi:10.7551/mitpress/9543.001.0001
  3. Bernard C. Leçons sur les effets des substances toxiques et médicamenteuses. Baillière; 1857. doi:10.5962/bhl.title.1834
  4. Gutmann E. The denervated muscle. Publishing House of the Czechoslovak Academy of Sciences; 1962. doi:10.1007/978-1-4899-4854-0
  5. Close R. Dynamic properties of mammalian skeletal muscles. Physiol Rev. 1972;52(1):129-197. doi:10.1152/physrev.1972.52.1.129. PubMed
  6. Burke RE, Levine DN, Tsairis P, Zajac FE 3rd. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol. 1973;234(3):723-748. doi:10.1113/jphysiol.1973.sp010369. PubMed PubMedCentral
  7. Ji LL, Yeo D. Mitochondrial dysregulation and muscle disuse atrophy. F1000Res. 2019;8:1621. doi:10.12688/f1000research.19139.1. PubMed PubMedCentral
  8. Rich MM, Pinter MJ. Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol. 2003;547(Pt 2):555-566. doi:10.1113/jphysiol.2002.035188. PubMed PubMedCentral
  9. Das A, Chakraborty A, Srivastav S, Kaur S, Jain S, Bade G. Study of neuromuscular transmission under fatigue, site of fatigue, and neuromuscular blocking in an in-situ rat nerve muscle preparation. Indian J Physiol Pharmacol. 2019;63(1):79-85.
  10. Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994;74(1):49-94. doi:10.1152/physrev.1994.74.1.49. PubMed
  11. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287-332. doi:10.1152/physrev.00015.2007. PubMed
  12. Angelidis A, Drzymała-Celichowska H, Kryściak K, Vandenboom R, Celichowski J. Concomitant effects of fatigue and potentiation in rat medial gastrocnemius fast motor units. Sci Rep. 2025;15(1):23085. doi:10.1038/s41598-025-07607-0. PubMed PubMedCentral
  13. Govbakh IO, Zavodovskiy DO, Bulgakova NV, Maznychenko AV, Vasylenko DA. Nerve conduction and neuromuscular transmission in C57Bl/6 mice with genetically determined peripheral neuropathy. Neurophysiology. 2019;51(4):248-252. doi:10.1007/s11062-019-09817-5
  14. Govbakh IO, Zavodovskiy DO, Bulgakova NV, Vasylenko DA, Maznychenko AV. Coordination of locomotor activity in transgenic C57Bl/6 mice with hereditary neuropathy. Neurophysiology. 2019;51(5):353-357. doi:10.1007/s11062-020-09829-6
  15. Juckett L, Saffari TM, Ormseth B, Senger JL, Moore AM. The effect of electrical stimulation on nerve regeneration following peripheral nerve injury. Biomolecules. 2022;12(12):1856. doi:10.3390/biom12121856. PubMed PubMedCentral
  16. Gordon T, Tyreman N, Raji MA. The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci. 2011;31(14):5325-5334. doi:10.1523/JNEUROSCI.6156-10.2011. PubMed PubMedCentral
  17. Fletcher B, Phillips R, Faust A, Cook JL, Nuelle JAV. Physical exercise to promote regeneration after peripheral nerve injury in animal models: a systematic review. J Orthop Res. 2024;42(7):1608-1622. doi:10.1002/jor.25792. PubMed
  18. Zavodovskyi D. Study of traumatic injury to limb muscles in rats and mice: a narrative review. Neurophysiology. 2025. doi:10.1007/s11062-025-09960-2
  19. Zavodovskyi D, Lehedza O, Semenuk N, Kostyukov A. Mechanogram-based differentiation of post-amputation versus ischemic skeletal muscle dysfunction in rats. Neurophysiology. 2025. doi:10.1007/s11062-025-09966-w
  20. Frelichova V, Bém R, Chlupac J, Dubsky M. Animal experimental models of ischemic limbs: a systematic review. Vasc Pharmacol. 2023;153(2):107237. doi:10.1016/j.vph.2023.107237. PubMed
  21. Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013;6(1):25-39. doi:10.1242/dmm.010389. PubMed PubMedCentral
  22. Zavodovskyi DO, Bulgakova NV, Sokolowska I, Piosik J, Maznychenko A. Water-soluble pristine C60 fullerenes attenuate isometric muscle force reduction in a rat acute inflammatory pain model. BMC Musculoskelet Disord. 2023;24:606. doi:10.1186/s12891-023-06719-w. PubMed PubMedCentral
  23. Callahan LA, Supinski GS. Sepsis-induced myopathy. Crit Care Med. 2009;37(10 Suppl):S354-S367. doi:10.1097/CCM.0b013e3181b6e439. PubMed PubMedCentral
  24. Lewis MT, Kasper JD, Bazil JN, et al. Skeletal muscle energetics are compromised only during high-intensity contractions in the Goto-Kakizaki rat model of type 2 diabetes. Am J Physiol Endocrinol Metab. 2019;317(3):E479-E490. doi:10.1152/ajpendo.00049.2019. PubMed PubMedCentral
  25. Zavodovskyi D, Lehedza O, Bulgakova N, Semenuk N, Kostyukov О. The method of evoked potentials as a promising direction for the study of nociception in anesthetized animals. Fiziol Zh. 2024;70(3):65-72. doi:10.15407/fz70.03.065
  26. Krause T, Gerbershagen MU, Fiege M, Weisshorn R, Wappler F. Dantrolene—a review of its pharmacology, therapeutic use and new developments. Anaesthesia. 2004;59(4):364-373. doi:10.1111/j.1365-2044.2004.03658.x. PubMed
  27. Reid MB. Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand. 2001;172(4):245-255. doi:10.1046/j.1365-201X.2001.00880.x
  28. Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001;81(1):209-237. doi:10.1152/physrev.2001.81.1.209. PubMed
  29. Maréchal G, Gailly P. Effects of nitric oxide on the contraction of skeletal muscle. Cell Mol Life Sci. 1999;55(8-9):1088-1102. doi:10.1007/s000180050359. PubMed PubMedCentral
  30. Hernández A, Schiffer TA, Ivarsson N, et al. Dietary nitrate increases tetanic [Ca²⁺]i and contractile force in mouse fast-twitch muscle. J Physiol. 2012;590(15):3575-3583. doi:10.1113/jphysiol.2012.232777. PubMed PubMedCentral
  31. Shapoval LM, Dmytrenko OV, Sagach VF, Tsierkezos N, Ritter U. Systemic administrations of water-dispersible single-walled carbon nanotubes: activation of NOS in spontaneously hypertensive rats. Neurophysiology. 2020;52(2):101-109. doi:10.1007/s11062-020-09858-1

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.