Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(5): 106-120


CURRENT STATUS OF ACUTE KIDNEY INJURY: ETIOLOGY, MECHANISMS AND TREATMENT PROSPECTS

O.A. Kondratska1, V.M. Antonuyk1, B.V. Dzhuran2

  1. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  2. Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz71.05.106


Abstract

Acute kidney injury (AKI) is a common clinical syndrome characterized by damage to the kidney structure and rapid impairment of renal function, which leads to the inability to maintain fluid-electrolyte and acid-base homeostasis. AKI is recognized as a growing public health problem due to its complex pathophysiology and limited treatment efficacy, leading to an increase in morbidity. This review describes the key causes of AKI, analyzes the cellular and molecular mechanisms involved in the pathogenesis of this disease, with particular attention paid to oxidative stress and the role of amphoterin. The need to search for new therapeutic targets, pharmacological methods, and develop correction methods that would contribute to the attenuation of inflammation in AKI is substantiated.

Keywords: acute kidney injury; inflammation; oxidative stress; mitochondrial dysfunction; amphoterin

References

  1. Yao C, Li Z, Sun K, Zhang Y, Shou S, Jin H. Mitochondrial dysfunction in acute kidney injury. Ren Fail. 2024;46(2):2393262. doi: 10.1080/0886022X. 2024.2393262. CrossRef PubMed PubMedCentral
  2. Yang Y, Song M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, Dong Z. Renoprotective approaches and strategies in acute kidney injury. Pharmacol Ther. 2016;163:58-73. doi: 10.1016/j.pharmthera.2016.03.015. CrossRef PubMed PubMedCentral
  3. Sharifi MR, Hakimi Z, Ghalibaf MHE, Fazeli E, Behshti F, Marefati N, Hosseini M. Acetyl-11-keto-β-boswellic acid and incensole acetate attenuate lipopolysaccharide-induced acute kidney injury by inhibiting inflammation and oxidative stress. Saudi J Kidney Dis Transpl. 2023;34(Suppl 1):S142-S52. doi: 10.4103/sjkdt.sjkdt_41_22. CrossRef.sjkdt_41_22 PubMed
  4. Hua H, Ge X, Wu M, Zhu C, Chen L, Yang G, Zhang Y, Huang S, Zhang A, Jia Z. Rotenone protects against acetaminophen-induced kidney injury by attenuating oxidative stress and inflammation. Kidney Blood Press Res. 2018;43(4):1297-309. doi: 10.1159/000492589. CrossRef PubMed
  5. Pavlakou P, Liakopoulos V, Eleftheriadis T, Mitsis M, Dounousi E. Oxidative stress and acute kidney injury in critical illness: pathophysiologic mechanisms-biomarkers-interventions, and future perspectives. Oxid Med Cell Long. 2017;2017:6193694. doi: 10.1155/2017/6193694. CrossRef PubMed PubMedCentral
  6. Wasung ME, Chawla LS, Madero M. Biomarkers of renal function, which and when? Clin Chim Acta. 2015;438:350-7. doi: 10.1016/j.cca.2014.08.039. CrossRef PubMed
  7. Zang D, Li W, Cheng F, Zhang X, Rao T, Yu W, Wei J, Song Y, Jiang W. Accuracy and sensitivity of high mobility group box 1 (HMGB1) in diagnosis of acute kidney injury caused by sepsis and relevance to prognosis. Clin Chim Acta. 2022;535:61-7. doi: 10.1016/j.cca.2022.07.015. CrossRef PubMed
  8. Yoon SY, Kim JS, Jeong KH, Kim SK. Acute kidney injury: biomarker-guided diagnosis and management. Medicina (Kaunas). 2022;58(3):340. doi: 10.3390/ medicina58030340. CrossRef PubMed PubMedCentral
  9. Jha AK, Gairola S, Kundu S, Doye P, Syed AM, Ram C, Murty US, Naidu VGM, Sahu BD. Toll-like receptor 4: An attractive therapeutic target for acute kidney injury. Life Sci. 2021;271:119155. doi: 10.1016/j. lfs.2021.119155. CrossRef PubMed
  10. Nesovic Ostojic J, Kovacevic S, Ivanov M, Brkic P, Zivotic M, Mihailovic-Stanojevic N, Karanovic D, Vajic UJ, Jeremic R, Jovovic D, Miloradovic Z. Hyperbaric oxygen reduces oxidative stress impairment and DNA damage and simultaneously increases HIF-1α in ischemia-reperfusion acute kidney injury. Int J Mol Sci. 2024;25(7):3870. doi: CrossRef PubMed PubMedCentral
  11. Yeh TH, Tu KC, Wang HY, Chen JY. From acute to chronic: unraveling the pathophysiological mechanisms of the progression from acute kidney injury to acute kidney disease to chronic kidney disease. Int J Mol Sci. 2024;25(3):1755. doi: 10.3390/ijms25031755. CrossRef PubMed PubMedCentral
  12. Wang Z, Wu J, Hu Z, Luo C, Wang P, Zhang Y, Li H. Dexmedetomidine alleviates lipopolysaccharide-induced acute kidney injury by inhibiting p75NTR-mediated oxidative stress and apoptosis. Oxid Med Cell Long. 2020;2020:5454210. doi: 10.1155/2020/5454210. CrossRef PubMed PubMedCentral
  13. Laorodphun P, Cherngwelling R, Panya A, Arjinajarn P. Curcumin protects rats against gentamicin-induced nephrotoxicity by amelioration of oxidative stress, endoplasmic reticulum stress and apoptosis. Pharm Biol. 2022;60(1):491-500. doi: CrossRef PubMed PubMedCentral
  14. Ding C, Ding X, Zheng J, Wang B, Li Y, Xiang H, Dou M, Qiao Y, Tian P, Xue W. miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis. 2020;11(10):929. doi: 10.1038/s41419-020-03135-z. CrossRef PubMed PubMedCentral
  15. Oh H, Choi A, Seo N, Lim JS, You JS, Chung YE. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on post-contrast acute kidney injury. Sci Rep. 2021;11(1):15625. doi: 10.1038/s41598-021-94928-5. CrossRef PubMed PubMedCentral
  16. Hosohata K. Role of oxidative stress in drug-induced kidney injury. Int J Mol Sci. 2016;17(11):1826. doi: CrossRef PubMed PubMedCentral
  17. Blanco VE, Hernandorena CV, Scibona P, Belloso W, Musso CG. Acute kidney injury pharmacokinetic changes and its impact on drug prescription. Healthcare (Basel). 2019;7(1):10. doi: 10.3390/healthcare7010010. CrossRef PubMed PubMedCentral
  18. Kim H, Jo SK, Ahn SY, Kwon YJ, Lee H, Oh J, Chin HJ, Lim K, Lee J, Yang J, Kim MG, Cho WY, Oh SW. Long-term renal outcome of biopsy-proven acute tubular necrosis and acute interstitial nephritis. J Korean Med Sci. 2020;35(26):e206. doi: 10.3346/jkms.2020.35.e206. CrossRef PubMed PubMedCentral
  19. Rashid H, Jali A, Akhter MS, Abdi SAH. Molecular mechanisms of oxidative stress in acute kidney injury: targeting the loci by resveratrol. Int J Mol Sci. 2023;25(1):3. doi: CrossRef PubMed PubMedCentral
  20. Wang X, Chen L, Su T. Evaluating renal microcirculation in patients with acute kidney injury by contrast-enhanced ultrasonography: a protocol for an observational cohort study. BMC Nephrol. 2022;23(1):392. doi: 10.1186/ s12882-022-03021-0. CrossRef PubMed PubMedCentral
  21. Zhang X, Agborbesong E, Li X. The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. Int J Mol Sci. 2021;22(20):11253. doi: 10.3390/ijms222011253. CrossRef PubMed PubMedCentral
  22. Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol. 2022;23(5):692-704. doi: CrossRef PubMed PubMedCentral
  23. Younis NS. Myrrh essential oil mitigates renal ischemia/ reperfusion-induced injury. Curr Issues Mol Biol. 2023;45(2):1183-96. doi: 10.3390/cimb45020078. CrossRef PubMed PubMedCentral
  24. Raup-Konsavage WM, Wang Y, Wang WW, Feliers D, Ruan H, Reeves WB. Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int. 2018;93(2):365-74. doi: CrossRef PubMed PubMedCentral
  25. Pavlovich SI, Grushka NG, Kondratska OA, Krasutska NO, Antonuyk VM, Meshko VV, Yanchiy RI. Histostructural changes in immunocompetent organs, liver, and lungs during experimental endotoxemia induced by lipopolysaccharide. Fiziol Zh. 2024; 70(5): 66-71. doi: CrossRef 15407/fz70.05.066 [Ukrainian].
  26. Zhao H, Liu Z, Shen H, Jin S, Zhang S. Glycyrrhizic acid pretreatment prevents sepsis-induced acute kidney injury via suppressing inflammation, apoptosis and oxidative stress. Eur J Pharmacol. 2016;781:92-9. doi: 10.1016/j. ejphar.2016.04.006. CrossRef PubMed
  27. Antoniuk V, Pavlovych S, Dzhuran B, Kondratska O, Yanchii R. Histopathological alterations in kidney tissue following experimental endotoxemia in a murine model. Ukr J Nephrol Dialys. 2025;1(85):49-54. doi: 10.31450/ ukrjnd.1(85).2025.07. CrossRef.1(85).2025.07
  28. Herb M, Schramm M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants (Basel). 2021;10(2):313. doi: 10.3390/antiox10020313. CrossRef PubMed PubMedCentral
  29. Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med. 2021;172:633-51. doi: 10.1016/j. freeradbiomed.2021.07.007. CrossRef PubMed
  30. Naish E, Wood AJ, Stewart AP, Routledge M, Morris AC, Chilvers ER, Lodge KM. The formation and function of the neutrophil phagosome. Immunol Rev. 2023;314(1):158-80. doi: 10.1111/imr.13173. CrossRef PubMed PubMedCentral
  31. Rawat K, Shrivastava A. Neutrophils as emerging protagonists and targets in chronic inflammatory diseases. Inflamm Res. 2022;71(12):1477-88. doi: 10.1007/ s00011-022-01627-6. CrossRef PubMed PubMedCentral
  32. Wang P, Ouyang J, Jia Z, Zhang A, Yang Y. Roles of DNA damage in renal tubular epithelial cells injury. Front Physiol. 2023;14:1162546. doi: 10.3389/ fphys.2023.1162546. CrossRef PubMed PubMedCentral
  33. Wang M, Xiong H, Chen H, Li Q, Ruan XZ. Renal injury by SARS-CoV-2 infection: A systematic review. Kidney Dis (Basel). 2021;7(2):100-10. doi: 10.1159/000512683. CrossRef PubMed PubMedCentral
  34. Kupin WL. Viral-associated GN: Hepatitis B and other viral infections. Clin J Am Soc Nephrol. 2017;12(9):1529- CrossRef PubMed PubMedCentral
  35. Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022;30(7):679-92. doi: 10.1016/j.tim.2021.12.011. CrossRef PubMed
  36. Sassano ML, van Vliet AR, Agostinis P. Mitochondriaassociated membranes as networking platforms and regulators of cancer cell fate. Front Oncol. 2017;7:174. doi: 10.3389/fonc.2017.00174. CrossRef PubMed PubMedCentral
  37. Hejazian SM, Hosseiniyan Khatibi SM, Barzegari A, Pavon-Djavid G, Razi Soofiyani S, Hassannejhad S, Ahmadian E, Ardalan M, Zununi Vahed S. Nrf-2 as a therapeutic target in acute kidney injury. Life Sci. 2021;264:118581. doi: 10.1016/j.lfs.2020.118581. CrossRef PubMed
  38. Palipoch S. A review of oxidative stress in acute kidney injury: protective role of medicinal plants-derived antioxidants. Afr J Tradit Complement Altern Med. 2013;10(4):88-93. doi: 10.4314/ajtcam.v10i4.15. CrossRef PubMed PubMedCentral
  39. Xu N, Jiang S, Persson PB, Persson EAG, Lai EY, Patzak A. Reactive oxygen species in renal vascular function. Acta Physiol (Oxf). 2020;229(4):e13477. doi: 10.1111/apha.13477. CrossRef PubMed
  40. Irazabal MV, Torres VE. Reactive oxygen species and redox signaling in chronic kidney disease. Cells. 2020;9(6):1342. doi: 10.3390/cells9061342. CrossRef PubMed PubMedCentral
  41. Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411-21. doi: 10.1038/nrm3801. CrossRef PubMed
  42. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 2016;25(3):119-46. doi: 10.1089/ars.2016.6665. CrossRef PubMed PubMedCentral
  43. Jha JC, Banal C, Chow BS, Cooper ME, Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress. Antioxid Redox Signal. 2016;25(12):657-84. doi: CrossRef PubMed PubMedCentral
  44. Doke T, Susztak K. The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development. Trends Cell Biol. 2022;32(10):841-53. doi: CrossRef PubMed PubMedCentral
  45. Lee H, Jose PA. Coordinated contribution of NADPH oxidase- and mitochondria-derived reactive oxygen species in metabolic syndrome and its implication in renal dysfunction. Front Pharmacol. 2021;12:670076. doi: CrossRef PubMed PubMedCentral
  46. Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Pedraza-Chaverri J. Mitochondrial redox signaling and oxidative stress in kidney diseases. Biomolecules. 2021;11(8):1144. doi: 10.3390/biom11081144. CrossRef PubMed PubMedCentral
  47. Qi H, Xu G, Peng XL, Li X, Shuai J, Xu R. Roles of four feedback loops in mitochondrial permeability transition pore opening induced by Ca2+ and reactive oxygen species. Phys Rev E. 2020;102(6-1):062422. doi: 10.1103/ PhysRevE.102.062422. CrossRef PubMed
  48. Liu P, Chen Y, Xiao J, Zhu W, Yan X, Chen M. Protective effect of natural products in the metabolic-associated kidney diseases viaregulating mitochondrial dysfunction. Front Pharmacol. 2023;13:1093397. doi: 10.3389/fphar.2022.1093397. CrossRef PubMed PubMedCentral
  49. Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, Yang G, Chen Y, Cheng J, Lu Y, Liu J. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11(4):1845-63. doi: 10.7150/thno.50905. CrossRef PubMed PubMedCentral
  50. Liu T, Zhao H, Wang Y, Qu P, Wang Y, Wu X, Zhao T, Yang L, Mao H, Peng L, Zhan Y, Li P. Serum high mobility group box 1 as a potential biomarker for the progression of kidney disease in patients with type 2 diabetes. Front Immunol. 2024;15:1334109. doi: 10.3389/fimmu.2024.1334109. CrossRef PubMed PubMedCentral
  51. Wang Y, Zhang H, Chen Q, Jiao F, Shi C, Pei M, Lv J, Zhang H, Wang L, Gong Z. TNF-α/HMGB1 inflammation signalling pathway regulates pyroptosis during liver failure and acute kidney injury. Cell Prolif. 2020;53(6):e12829. doi: 10.1111/cpr.12829. CrossRef PubMed PubMedCentral
  52. Ludes PO, de Roquetaillade C, Chousterman BG, Pottecher J, Mebazaa A. Role of damage-associated molecular patterns in septic acute kidney injury, from injury to recovery. Front Immunol. 2021;12:606622. doi: 10.3389/ fimmu.2021.606622. CrossRef PubMed PubMedCentral
  53. Gan ZS, Wang QQ, Li JH, Wang XL, Wang YZ, Du HH. Iron reduces M1 macrophage polarization in RAW264.7 macrophages associated with inhibition of STAT1. Mediat Inflamm. 2017;2017:8570818. doi: CrossRef PubMed PubMedCentral
  54. Zhao Z, Hu Z, Zeng R, Yao Y. HMGB1 in kidney diseases. Life Sci. 2020;259:118203. doi: 10.1016/j. lfs.2020.118203. CrossRef PubMed
  55. Tonnus W, Gembardt F, Latk M, Parmentier S, Hugo C, Bornstein SR, Linkermann A. The clinical relevance of necroinflammation-highlighting the importance of acute kidney injury and the adrenal glands. Cell Death Differ. 2019;26(1):68-82. doi: 10.1038/s41418-018-0193-5. CrossRef PubMed PubMedCentral
  56. Matsuura R, Komaru Y, Miyamoto Y, Yoshida T, Yoshimoto K, Yamashita T, Hamasaki Y, Noiri E, Nangaku M, Doi K. HMGB1 is a prognostic factor for mortality in acute kidney injury requiring renal replacement therapy. Blood Purif. 2023;52(7-8):660-7. doi: 10.1159/000530774. CrossRef PubMed PubMedCentral
  57. Kondratska OA, Grushka NG, Meshko VV, Pavlovych SI, Yanchii RI. Multifunctional activity of nuclear protein amphoterin and its role in endotoxemia. Fiziol Zh. 2023; 69(6):120-32. doi: 10.15407/fz69.06.120. [Ukrainian]. CrossRef
  58. Mo C, Huang Q, Li L, Long Y, Shi Y, Lu Z, Wu N, Li Q, Zeng H, Li G, Qiu L, Gui C, Ji Q. High-mobility group box 1 and its related receptors: potential therapeutic targets for contrast-induced acute kidney injury. Int Urol Nephrol. 2024;56(7):2291-9. doi: 10.1007/s11255-024-03981-2. CrossRef PubMed
  59. Ruan Y, Wang L, Zhao Y, Yao Y, Chen S, Li J, Guo H, Ming C, Chen S, Gong F, Chen G. Carbon monoxide potently prevents ischemia-induced high-mobility group box 1 translocation and release and protects against lethal renal ischemia-reperfusion injury. Kidney Int. 2014;86(3):525- CrossRef PubMed
  60. Zhan J, Wang K, Zhang C, Zhang C, Li Y, Zhang Y, Chang X, Zhou Q, Yao Y, Liu Y, Xu G. GSPE inhibits HMGB1 release, attenuating renal IR-induced acute renal injury and chronic renal fibrosis. Int J Mol Sci. 2016;17(10):1647. doi: 10.3390/ijms17101647. CrossRef PubMed PubMedCentral
  61. Zhu F, Chong Lee Shin OL, Xu H, Zhao Z, Pei G, Hu Z, Yang J, Guo Y et al. Melatonin promoted renal regeneration in folic acid-induced acute kidney injury via inhibiting nucleocytoplasmic translocation of HMGB1 in tubular epithelial cells. Am J Transl Res. 2017;9(4):1694-707.
  62. Zhang S, Weinberg S, DeBerge M, Gainullina A, Schipma M, Kinchen JM, Ben-Sahra I, Gius DR, Yvan-Charvet L, Chandel NS, Schumacker PT. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 2019;29(2):443-56.e5. doi: 10.1016/j.cmet.2018.12.004. CrossRef PubMed PubMedCentral
  63. Morioka S, Maueröder C, Ravichandran KS. Living on the edge: Efferocytosis at the interface of homeostasis and pathology. Immunity. 2019;50(5):1149-62. doi: CrossRef PubMed PubMedCentral
  64. Sarhan M, von Mässenhausen A, Hugo C, Oberbauer R, Linkermann A. Immunological consequences of kidney cell death. Cell Death Dis. 2018;9(2):114. doi: 10.1038/ s41419-017-0057-9. CrossRef PubMed PubMedCentral
  65. Stevens NE, Chapman MJ, Fraser CK, Kuchel TR, Hayball JD, Diener KR. Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci Rep. 2017;7(1):5850. doi: 10.1038/s41598- 017-06205-z. CrossRef PubMed PubMedCentral
  66. Yang H, Wang H, Ju Z, Ragab AA, Lundbäck P, Long W, Valdes-Ferrer SI et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J Exp Med. 2015;212(1):5-14. doi: 10.1084/jem.20141318. CrossRef PubMed PubMedCentral
  67. Valdés-Ferrer SI, Papoin J, Dancho ME, Olofsson PS, Li J, Lipton JM, et al. HMGB1 Mediates anemia of inflammation in murine sepsis survivors. Mol Med. 2016;21(1):951-8. doi: 10.2119/molmed.2015.00243. CrossRef PubMed PubMedCentral
  68. Coe FL, Worcester EM, Evan AP. Idiopathic hypercalciuria and formation of calcium renal stones. Nat Rev Nephrol. 2016;12(9):519-33. doi: 10.1038/nrneph.2016.101. CrossRef PubMed PubMedCentral
  69. Liu Y, Sun Y, Kang J, He Z, Liu Q, Wu J, Li D, Wang X, Tao Z, Guan X, She W, Xu H, Deng Y. Role of ROSInduced NLRP3 Inflammasome activation in the formation of calcium oxalate nephrolithiasis. Front Immunol. 2022;13:818625. doi: 10.3389/fimmu.2022.818625. CrossRef PubMed PubMedCentral
  70. Wang Y, Sun C, Li C, Deng Y, Zeng G, Tao Z, Wang X, Guan X, Zhao Y. Urinary MCP-1、HMGB1 increased in calcium nephrolithiasis patients and the influence of hypercalciuria on the production of the two cytokines. Urolithiasis. 2017;45(2):159-75. doi: 10.1007/s00240-016-0902-9. CrossRef PubMed
  71. Joshi S, Wang W, Khan SR. Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: Inflammatory changes are mainly associated with crystal deposition. PLoS One. 2017;12(11):e0185009. doi: 10.1371/journal.pone.0185009. CrossRef PubMed PubMedCentral
  72. Khan SR. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl Androl Urol. 2014;3(3):256-76. doi: 10.3978/j.issn.2223- 4683.2014.06.04.
  73. Macarini AF, Mariano LNB, Zanovello M, da Silva RCV, Corrêa R, de Souza P. Protective role of rosmarinic acid in experimental urolithiasis: Understanding its impact on renal parameters. Pharmaceuticals (Basel). 2024;17(6):702. doi: 10.3390/ph17060702. CrossRef PubMed PubMedCentral
  74. Khan A, Bashir S, Khan SR. Antiurolithic effects of medicinal plants: results of in vivo studies in rat models of calcium oxalate nephrolithiasis-a systematic review. Urolithiasis. 2021;49(2):95-122. doi: 10.1007/s00240- 020-01236-0. CrossRef PubMed
  75. Liu H, Ye T, Yang X, Liu J, Jiang K, Lu H, Xia D, Peng E, Chen Z, Sun F, Tang K, Ye Z. H19 promote calcium oxalate nephrocalcinosis-induced renal tubular epithelial cell injury via a ceRNA pathway. EBioMedicine. 2019;50:366-78. doi: 10.1016/j.ebiom.2019.10.059. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.