CURRENT STATUS OF ACUTE KIDNEY INJURY: ETIOLOGY, MECHANISMS AND TREATMENT PROSPECTS
O.A. Kondratska1, V.M. Antonuyk1, B.V. Dzhuran2
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz71.05.106

Abstract
Acute kidney injury (AKI) is a common clinical syndrome
characterized by damage to the kidney structure and rapid
impairment of renal function, which leads to the inability to
maintain fluid-electrolyte and acid-base homeostasis. AKI
is recognized as a growing public health problem due to its
complex pathophysiology and limited treatment efficacy,
leading to an increase in morbidity. This review describes
the key causes of AKI, analyzes the cellular and molecular
mechanisms involved in the pathogenesis of this disease,
with particular attention paid to oxidative stress and the role
of amphoterin. The need to search for new therapeutic targets,
pharmacological methods, and develop correction methods
that would contribute to the attenuation of inflammation in
AKI is substantiated.
Keywords:
acute kidney injury; inflammation; oxidative stress; mitochondrial dysfunction; amphoterin
References
- Yao C, Li Z, Sun K, Zhang Y, Shou S, Jin H. Mitochondrial dysfunction in acute kidney injury. Ren Fail. 2024;46(2):2393262. doi: 10.1080/0886022X. 2024.2393262.
CrossRef
PubMed PubMedCentral
- Yang Y, Song M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, Dong Z. Renoprotective approaches and strategies in acute kidney injury. Pharmacol Ther. 2016;163:58-73. doi: 10.1016/j.pharmthera.2016.03.015.
CrossRef
PubMed PubMedCentral
- Sharifi MR, Hakimi Z, Ghalibaf MHE, Fazeli E, Behshti F, Marefati N, Hosseini M. Acetyl-11-keto-β-boswellic acid and incensole acetate attenuate lipopolysaccharide-induced acute kidney injury by inhibiting inflammation and oxidative stress. Saudi J Kidney Dis Transpl. 2023;34(Suppl 1):S142-S52. doi: 10.4103/sjkdt.sjkdt_41_22.
CrossRef.sjkdt_41_22
PubMed
- Hua H, Ge X, Wu M, Zhu C, Chen L, Yang G, Zhang Y, Huang S, Zhang A, Jia Z. Rotenone protects against acetaminophen-induced kidney injury by attenuating oxidative stress and inflammation. Kidney Blood Press Res. 2018;43(4):1297-309. doi: 10.1159/000492589.
CrossRef
PubMed
- Pavlakou P, Liakopoulos V, Eleftheriadis T, Mitsis M, Dounousi E. Oxidative stress and acute kidney injury in critical illness: pathophysiologic mechanisms-biomarkers-interventions, and future perspectives. Oxid Med Cell Long. 2017;2017:6193694. doi: 10.1155/2017/6193694.
CrossRef
PubMed PubMedCentral
- Wasung ME, Chawla LS, Madero M. Biomarkers of renal function, which and when? Clin Chim Acta. 2015;438:350-7. doi: 10.1016/j.cca.2014.08.039.
CrossRef
PubMed
- Zang D, Li W, Cheng F, Zhang X, Rao T, Yu W, Wei J, Song Y, Jiang W. Accuracy and sensitivity of high mobility group box 1 (HMGB1) in diagnosis of acute kidney injury caused by sepsis and relevance to prognosis. Clin Chim Acta. 2022;535:61-7. doi: 10.1016/j.cca.2022.07.015.
CrossRef
PubMed
- Yoon SY, Kim JS, Jeong KH, Kim SK. Acute kidney injury: biomarker-guided diagnosis and management. Medicina (Kaunas). 2022;58(3):340. doi: 10.3390/ medicina58030340.
CrossRef
PubMed PubMedCentral
- Jha AK, Gairola S, Kundu S, Doye P, Syed AM, Ram C, Murty US, Naidu VGM, Sahu BD. Toll-like receptor 4: An attractive therapeutic target for acute kidney injury. Life Sci. 2021;271:119155. doi: 10.1016/j. lfs.2021.119155.
CrossRef
PubMed
- Nesovic Ostojic J, Kovacevic S, Ivanov M, Brkic P, Zivotic M, Mihailovic-Stanojevic N, Karanovic D, Vajic UJ, Jeremic R, Jovovic D, Miloradovic Z. Hyperbaric oxygen reduces oxidative stress impairment and DNA damage and simultaneously increases HIF-1α in ischemia-reperfusion acute kidney injury. Int J Mol Sci. 2024;25(7):3870. doi:
CrossRef
PubMed PubMedCentral
- Yeh TH, Tu KC, Wang HY, Chen JY. From acute to chronic: unraveling the pathophysiological mechanisms of the progression from acute kidney injury to acute kidney disease to chronic kidney disease. Int J Mol Sci. 2024;25(3):1755. doi: 10.3390/ijms25031755.
CrossRef
PubMed PubMedCentral
- Wang Z, Wu J, Hu Z, Luo C, Wang P, Zhang Y, Li H. Dexmedetomidine alleviates lipopolysaccharide-induced acute kidney injury by inhibiting p75NTR-mediated oxidative stress and apoptosis. Oxid Med Cell Long. 2020;2020:5454210. doi: 10.1155/2020/5454210.
CrossRef
PubMed PubMedCentral
- Laorodphun P, Cherngwelling R, Panya A, Arjinajarn P. Curcumin protects rats against gentamicin-induced nephrotoxicity by amelioration of oxidative stress, endoplasmic reticulum stress and apoptosis. Pharm Biol. 2022;60(1):491-500. doi:
CrossRef
PubMed PubMedCentral
- Ding C, Ding X, Zheng J, Wang B, Li Y, Xiang H, Dou M, Qiao Y, Tian P, Xue W. miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis. 2020;11(10):929. doi: 10.1038/s41419-020-03135-z.
CrossRef
PubMed PubMedCentral
- Oh H, Choi A, Seo N, Lim JS, You JS, Chung YE. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on post-contrast acute kidney injury. Sci Rep. 2021;11(1):15625. doi: 10.1038/s41598-021-94928-5.
CrossRef
PubMed PubMedCentral
- Hosohata K. Role of oxidative stress in drug-induced kidney injury. Int J Mol Sci. 2016;17(11):1826. doi:
CrossRef
PubMed PubMedCentral
- Blanco VE, Hernandorena CV, Scibona P, Belloso W, Musso CG. Acute kidney injury pharmacokinetic changes and its impact on drug prescription. Healthcare (Basel). 2019;7(1):10. doi: 10.3390/healthcare7010010.
CrossRef
PubMed PubMedCentral
- Kim H, Jo SK, Ahn SY, Kwon YJ, Lee H, Oh J, Chin HJ, Lim K, Lee J, Yang J, Kim MG, Cho WY, Oh SW. Long-term renal outcome of biopsy-proven acute tubular necrosis and acute interstitial nephritis. J Korean Med Sci. 2020;35(26):e206. doi: 10.3346/jkms.2020.35.e206.
CrossRef
PubMed PubMedCentral
- Rashid H, Jali A, Akhter MS, Abdi SAH. Molecular mechanisms of oxidative stress in acute kidney injury: targeting the loci by resveratrol. Int J Mol Sci. 2023;25(1):3. doi:
CrossRef
PubMed PubMedCentral
- Wang X, Chen L, Su T. Evaluating renal microcirculation in patients with acute kidney injury by contrast-enhanced ultrasonography: a protocol for an observational cohort study. BMC Nephrol. 2022;23(1):392. doi: 10.1186/ s12882-022-03021-0.
CrossRef
PubMed PubMedCentral
- Zhang X, Agborbesong E, Li X. The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. Int J Mol Sci. 2021;22(20):11253. doi: 10.3390/ijms222011253.
CrossRef
PubMed PubMedCentral
- Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol. 2022;23(5):692-704. doi:
CrossRef
PubMed PubMedCentral
- Younis NS. Myrrh essential oil mitigates renal ischemia/ reperfusion-induced injury. Curr Issues Mol Biol. 2023;45(2):1183-96. doi: 10.3390/cimb45020078.
CrossRef
PubMed PubMedCentral
- Raup-Konsavage WM, Wang Y, Wang WW, Feliers D, Ruan H, Reeves WB. Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int. 2018;93(2):365-74. doi:
CrossRef
PubMed PubMedCentral
- Pavlovich SI, Grushka NG, Kondratska OA, Krasutska NO, Antonuyk VM, Meshko VV, Yanchiy RI. Histostructural changes in immunocompetent organs, liver, and lungs during experimental endotoxemia induced by lipopolysaccharide. Fiziol Zh. 2024; 70(5): 66-71. doi:
CrossRef 15407/fz70.05.066 [Ukrainian].
- Zhao H, Liu Z, Shen H, Jin S, Zhang S. Glycyrrhizic acid pretreatment prevents sepsis-induced acute kidney injury via suppressing inflammation, apoptosis and oxidative stress. Eur J Pharmacol. 2016;781:92-9. doi: 10.1016/j. ejphar.2016.04.006.
CrossRef
PubMed
- Antoniuk V, Pavlovych S, Dzhuran B, Kondratska O, Yanchii R. Histopathological alterations in kidney tissue following experimental endotoxemia in a murine model. Ukr J Nephrol Dialys. 2025;1(85):49-54. doi: 10.31450/ ukrjnd.1(85).2025.07.
CrossRef.1(85).2025.07
- Herb M, Schramm M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants (Basel). 2021;10(2):313. doi: 10.3390/antiox10020313.
CrossRef
PubMed PubMedCentral
- Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med. 2021;172:633-51. doi: 10.1016/j. freeradbiomed.2021.07.007.
CrossRef
PubMed
- Naish E, Wood AJ, Stewart AP, Routledge M, Morris AC, Chilvers ER, Lodge KM. The formation and function of the neutrophil phagosome. Immunol Rev. 2023;314(1):158-80. doi: 10.1111/imr.13173.
CrossRef
PubMed PubMedCentral
- Rawat K, Shrivastava A. Neutrophils as emerging protagonists and targets in chronic inflammatory diseases. Inflamm Res. 2022;71(12):1477-88. doi: 10.1007/ s00011-022-01627-6.
CrossRef
PubMed PubMedCentral
- Wang P, Ouyang J, Jia Z, Zhang A, Yang Y. Roles of DNA damage in renal tubular epithelial cells injury. Front Physiol. 2023;14:1162546. doi: 10.3389/ fphys.2023.1162546.
CrossRef
PubMed PubMedCentral
- Wang M, Xiong H, Chen H, Li Q, Ruan XZ. Renal injury by SARS-CoV-2 infection: A systematic review. Kidney Dis (Basel). 2021;7(2):100-10. doi: 10.1159/000512683.
CrossRef
PubMed PubMedCentral
- Kupin WL. Viral-associated GN: Hepatitis B and other viral infections. Clin J Am Soc Nephrol. 2017;12(9):1529-
CrossRef
PubMed PubMedCentral
- Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022;30(7):679-92. doi: 10.1016/j.tim.2021.12.011.
CrossRef
PubMed
- Sassano ML, van Vliet AR, Agostinis P. Mitochondriaassociated membranes as networking platforms and regulators of cancer cell fate. Front Oncol. 2017;7:174. doi: 10.3389/fonc.2017.00174.
CrossRef
PubMed PubMedCentral
- Hejazian SM, Hosseiniyan Khatibi SM, Barzegari A, Pavon-Djavid G, Razi Soofiyani S, Hassannejhad S, Ahmadian E, Ardalan M, Zununi Vahed S. Nrf-2 as a therapeutic target in acute kidney injury. Life Sci. 2021;264:118581. doi: 10.1016/j.lfs.2020.118581.
CrossRef
PubMed
- Palipoch S. A review of oxidative stress in acute kidney injury: protective role of medicinal plants-derived antioxidants. Afr J Tradit Complement Altern Med. 2013;10(4):88-93. doi: 10.4314/ajtcam.v10i4.15.
CrossRef
PubMed PubMedCentral
- Xu N, Jiang S, Persson PB, Persson EAG, Lai EY, Patzak A. Reactive oxygen species in renal vascular function. Acta Physiol (Oxf). 2020;229(4):e13477. doi: 10.1111/apha.13477.
CrossRef
PubMed
- Irazabal MV, Torres VE. Reactive oxygen species and redox signaling in chronic kidney disease. Cells. 2020;9(6):1342. doi: 10.3390/cells9061342.
CrossRef
PubMed PubMedCentral
- Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411-21. doi: 10.1038/nrm3801.
CrossRef
PubMed
- Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 2016;25(3):119-46. doi: 10.1089/ars.2016.6665.
CrossRef
PubMed PubMedCentral
- Jha JC, Banal C, Chow BS, Cooper ME, Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress. Antioxid Redox Signal. 2016;25(12):657-84. doi:
CrossRef
PubMed PubMedCentral
- Doke T, Susztak K. The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development. Trends Cell Biol. 2022;32(10):841-53. doi:
CrossRef
PubMed PubMedCentral
- Lee H, Jose PA. Coordinated contribution of NADPH oxidase- and mitochondria-derived reactive oxygen species in metabolic syndrome and its implication in renal dysfunction. Front Pharmacol. 2021;12:670076. doi:
CrossRef
PubMed PubMedCentral
- Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Pedraza-Chaverri J. Mitochondrial redox signaling and oxidative stress in kidney diseases. Biomolecules. 2021;11(8):1144. doi: 10.3390/biom11081144.
CrossRef
PubMed PubMedCentral
- Qi H, Xu G, Peng XL, Li X, Shuai J, Xu R. Roles of four feedback loops in mitochondrial permeability transition pore opening induced by Ca2+ and reactive oxygen species. Phys Rev E. 2020;102(6-1):062422. doi: 10.1103/ PhysRevE.102.062422.
CrossRef
PubMed
- Liu P, Chen Y, Xiao J, Zhu W, Yan X, Chen M. Protective effect of natural products in the metabolic-associated kidney diseases viaregulating mitochondrial dysfunction. Front Pharmacol. 2023;13:1093397. doi: 10.3389/fphar.2022.1093397.
CrossRef
PubMed PubMedCentral
- Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, Yang G, Chen Y, Cheng J, Lu Y, Liu J. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11(4):1845-63. doi: 10.7150/thno.50905.
CrossRef
PubMed PubMedCentral
- Liu T, Zhao H, Wang Y, Qu P, Wang Y, Wu X, Zhao T, Yang L, Mao H, Peng L, Zhan Y, Li P. Serum high mobility group box 1 as a potential biomarker for the progression of kidney disease in patients with type 2 diabetes. Front Immunol. 2024;15:1334109. doi: 10.3389/fimmu.2024.1334109.
CrossRef
PubMed PubMedCentral
- Wang Y, Zhang H, Chen Q, Jiao F, Shi C, Pei M, Lv J, Zhang H, Wang L, Gong Z. TNF-α/HMGB1 inflammation signalling pathway regulates pyroptosis during liver failure and acute kidney injury. Cell Prolif. 2020;53(6):e12829. doi: 10.1111/cpr.12829.
CrossRef
PubMed PubMedCentral
- Ludes PO, de Roquetaillade C, Chousterman BG, Pottecher J, Mebazaa A. Role of damage-associated molecular patterns in septic acute kidney injury, from injury to recovery. Front Immunol. 2021;12:606622. doi: 10.3389/ fimmu.2021.606622.
CrossRef
PubMed PubMedCentral
- Gan ZS, Wang QQ, Li JH, Wang XL, Wang YZ, Du HH. Iron reduces M1 macrophage polarization in RAW264.7 macrophages associated with inhibition of STAT1. Mediat Inflamm. 2017;2017:8570818. doi:
CrossRef
PubMed PubMedCentral
- Zhao Z, Hu Z, Zeng R, Yao Y. HMGB1 in kidney diseases. Life Sci. 2020;259:118203. doi: 10.1016/j. lfs.2020.118203.
CrossRef
PubMed
- Tonnus W, Gembardt F, Latk M, Parmentier S, Hugo C, Bornstein SR, Linkermann A. The clinical relevance of necroinflammation-highlighting the importance of acute kidney injury and the adrenal glands. Cell Death Differ. 2019;26(1):68-82. doi: 10.1038/s41418-018-0193-5.
CrossRef
PubMed PubMedCentral
- Matsuura R, Komaru Y, Miyamoto Y, Yoshida T, Yoshimoto K, Yamashita T, Hamasaki Y, Noiri E, Nangaku M, Doi K. HMGB1 is a prognostic factor for mortality in acute kidney injury requiring renal replacement therapy. Blood Purif. 2023;52(7-8):660-7. doi: 10.1159/000530774.
CrossRef
PubMed PubMedCentral
- Kondratska OA, Grushka NG, Meshko VV, Pavlovych SI, Yanchii RI. Multifunctional activity of nuclear protein amphoterin and its role in endotoxemia. Fiziol Zh. 2023; 69(6):120-32. doi: 10.15407/fz69.06.120. [Ukrainian].
CrossRef
- Mo C, Huang Q, Li L, Long Y, Shi Y, Lu Z, Wu N, Li Q, Zeng H, Li G, Qiu L, Gui C, Ji Q. High-mobility group box 1 and its related receptors: potential therapeutic targets for contrast-induced acute kidney injury. Int Urol Nephrol. 2024;56(7):2291-9. doi: 10.1007/s11255-024-03981-2.
CrossRef
PubMed
- Ruan Y, Wang L, Zhao Y, Yao Y, Chen S, Li J, Guo H, Ming C, Chen S, Gong F, Chen G. Carbon monoxide potently prevents ischemia-induced high-mobility group box 1 translocation and release and protects against lethal renal ischemia-reperfusion injury. Kidney Int. 2014;86(3):525-
CrossRef
PubMed
- Zhan J, Wang K, Zhang C, Zhang C, Li Y, Zhang Y, Chang X, Zhou Q, Yao Y, Liu Y, Xu G. GSPE inhibits HMGB1 release, attenuating renal IR-induced acute renal injury and chronic renal fibrosis. Int J Mol Sci. 2016;17(10):1647. doi: 10.3390/ijms17101647.
CrossRef
PubMed PubMedCentral
- Zhu F, Chong Lee Shin OL, Xu H, Zhao Z, Pei G, Hu Z, Yang J, Guo Y et al. Melatonin promoted renal regeneration in folic acid-induced acute kidney injury via inhibiting nucleocytoplasmic translocation of HMGB1 in tubular epithelial cells. Am J Transl Res. 2017;9(4):1694-707.
- Zhang S, Weinberg S, DeBerge M, Gainullina A, Schipma M, Kinchen JM, Ben-Sahra I, Gius DR, Yvan-Charvet L, Chandel NS, Schumacker PT. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 2019;29(2):443-56.e5. doi: 10.1016/j.cmet.2018.12.004.
CrossRef
PubMed PubMedCentral
- Morioka S, Maueröder C, Ravichandran KS. Living on the edge: Efferocytosis at the interface of homeostasis and pathology. Immunity. 2019;50(5):1149-62. doi:
CrossRef
PubMed PubMedCentral
- Sarhan M, von Mässenhausen A, Hugo C, Oberbauer R, Linkermann A. Immunological consequences of kidney cell death. Cell Death Dis. 2018;9(2):114. doi: 10.1038/ s41419-017-0057-9.
CrossRef
PubMed PubMedCentral
- Stevens NE, Chapman MJ, Fraser CK, Kuchel TR, Hayball JD, Diener KR. Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci Rep. 2017;7(1):5850. doi: 10.1038/s41598- 017-06205-z.
CrossRef
PubMed PubMedCentral
- Yang H, Wang H, Ju Z, Ragab AA, Lundbäck P, Long W, Valdes-Ferrer SI et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J Exp Med. 2015;212(1):5-14. doi: 10.1084/jem.20141318.
CrossRef
PubMed PubMedCentral
- Valdés-Ferrer SI, Papoin J, Dancho ME, Olofsson PS, Li J, Lipton JM, et al. HMGB1 Mediates anemia of inflammation in murine sepsis survivors. Mol Med. 2016;21(1):951-8. doi: 10.2119/molmed.2015.00243.
CrossRef
PubMed PubMedCentral
- Coe FL, Worcester EM, Evan AP. Idiopathic hypercalciuria and formation of calcium renal stones. Nat Rev Nephrol. 2016;12(9):519-33. doi: 10.1038/nrneph.2016.101.
CrossRef
PubMed PubMedCentral
- Liu Y, Sun Y, Kang J, He Z, Liu Q, Wu J, Li D, Wang X, Tao Z, Guan X, She W, Xu H, Deng Y. Role of ROSInduced NLRP3 Inflammasome activation in the formation of calcium oxalate nephrolithiasis. Front Immunol. 2022;13:818625. doi: 10.3389/fimmu.2022.818625.
CrossRef
PubMed PubMedCentral
- Wang Y, Sun C, Li C, Deng Y, Zeng G, Tao Z, Wang X, Guan X, Zhao Y. Urinary MCP-1、HMGB1 increased in calcium nephrolithiasis patients and the influence of hypercalciuria on the production of the two cytokines. Urolithiasis. 2017;45(2):159-75. doi: 10.1007/s00240-016-0902-9.
CrossRef
PubMed
- Joshi S, Wang W, Khan SR. Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: Inflammatory changes are mainly associated with crystal deposition. PLoS One. 2017;12(11):e0185009. doi: 10.1371/journal.pone.0185009.
CrossRef
PubMed PubMedCentral
- Khan SR. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl Androl Urol. 2014;3(3):256-76. doi: 10.3978/j.issn.2223- 4683.2014.06.04.
- Macarini AF, Mariano LNB, Zanovello M, da Silva RCV, Corrêa R, de Souza P. Protective role of rosmarinic acid in experimental urolithiasis: Understanding its impact on renal parameters. Pharmaceuticals (Basel). 2024;17(6):702. doi: 10.3390/ph17060702.
CrossRef
PubMed PubMedCentral
- Khan A, Bashir S, Khan SR. Antiurolithic effects of medicinal plants: results of in vivo studies in rat models of calcium oxalate nephrolithiasis-a systematic review. Urolithiasis. 2021;49(2):95-122. doi: 10.1007/s00240- 020-01236-0.
CrossRef
PubMed
- Liu H, Ye T, Yang X, Liu J, Jiang K, Lu H, Xia D, Peng E, Chen Z, Sun F, Tang K, Ye Z. H19 promote calcium oxalate nephrocalcinosis-induced renal tubular epithelial cell injury via a ceRNA pathway. EBioMedicine. 2019;50:366-78. doi: 10.1016/j.ebiom.2019.10.059.
CrossRef
PubMed PubMedCentral
|