THE INFLUENCE OF MYOKINES ON THE CARDIOVASCULAR SYSTEM
S.N. Vadzyuk1, P.S. Tabas1, L.I. Gorban1, I.Ya. Papinko1, I.G. Bidzyura2
- I. Horbachevsky Ternopil National Medical University, Ukraine
- Municipal Institution of Higher Education «Volyn Medical Institute» of the Volyn Oblast Council, Lutsk, Ukraine
DOI: https://doi.org/10.15407/fz71.05.098

Abstract
Myokines (such as irisin, myonectin, myostatin, and brain-
derived neurotrophic factor) are secreted by skeletal muscles in
response to exercise and significantly affect the cardiovascular
system. Irisin prevents the development and progression of
heart failure, ischemic heart disease, sarcopenia, and other
diseases by reducing inflammation, improving antioxidant
defense, preventing cardiomyocyte apoptosis, and stimulating
angiogenesis. Myonectin enhances protective processes in the
heart during ischemic injury by reducing apoptosis and inflam-
matory reactions in the myocardium. Conversely, myostatin
is associated with the development of heart failure, athero-
sclerosis, and vascular aging; its overexpression negatively
affects the state of the cardiovascular system. Brain-derived
neurotrophic factor is involved in the regulation of cardiac
function and is a promising biomarker for predicting the course
of cardiac activity. Regular physical activity, by stimulating
the secretion of cardioprotective myokines, reduces the risk of
developing ischemic heart disease, heart failure, and associated
metabolic disorders. Determining myokine levels in peripheral
blood has the potential for early diagnosis and risk assessment
of cardiovascular events, opening up new opportunities for
personalized therapy.
Keywords:
myokines, cardiovascular system, hypertension, ischemic heart disease, endocrine system, sarcopenia, physical activity
References
- Otaka N, Shibata R, Ohashi K, Uemura Y , Kambara T, Enomoto T, et al. Myonectin is an exercise-induced myokine that protects the heart from ischemia-reperfusion injury. Circ Res. 2018;123(12):1326-38. DOI: 10.1161/ CIRCRESAHA.118.313777
CrossRef
PubMed
- Hupin D, Edouard P, Gremeaux V, Garet M, Celle S, Pichot V, et al. Physical activity to reduce mortality risk. Eur Heart J. 2017;38(20):1534-7. DOI: 10.1093/ eurheartj/ehx236
CrossRef
PubMed
- Kodama S. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA. 2009;301(19):2024. DOI: 10.1001/jama.2009.681
CrossRef
PubMed
- Möbius-Winkler S, Uhlemann M, Adams V , Sandri M, Erbs S, Lenk K, et al. Coronary collateral growth induced by physical exercise: results of the impact of intensive exercise training on coronary collateral circulation in patients with stable coronary artery disease (EXCITE) trial. Circulation. 2016;133(15):1438-48. DOI: 10.1161/ CIRCULATIONAHA.115.016442
CrossRef
PubMed
- Ouchi N, Ohashi K, Shibata R, Murohara T. Protective roles of adipocytokines and myokines in cardiovascular disease. Circ J. 2016;80(10):2073-80. DOI: 10.1253/ circj.CJ-16-0663
CrossRef
PubMed
- Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24(2- 3):113-9. DOI: 10.1023/a:1026070911202
CrossRef.1023/A:1026070911202
PubMed
- Ramírez-Vélez R, González A, García-Hermoso A, Amézqueta IL, Izquierdo M, Díez J. Revisiting skeletal myopathy and exercise training in heart failure: Emerging role of myokines. Metabolism. 2023;138: 48. DOI: 10.1016/j.metabol.2022.155348
CrossRef
PubMed
- Ataeinosrat A, Saeidi A, Abednatanzi H, Rahmani H, Daloii AA, Pashaei Z, et al. Intensity dependent effects of interval resistance training on myokines and cardiovascular risk factors in males with obesity. Front Endocrinol. 2022;13:15. DOI: 10.3389/fendo.2022.895512
CrossRef
PubMed PubMedCentral
- Chow LS, Gerszten RE, Taylor JM, Pedersen BK, Van Praag H, Trappe S, et al. Exerkines in health, resilience and disease. Nat Rev Endocrinol. 2022;18(5):273-89. DOI: 10.1038/s41574-022-00641-2
CrossRef
PubMed PubMedCentral
- Kong X, Yao T, Zhou P, Kazak L, Tenen D, Lyubetskaya A, et al. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. Cell Metab. 2018;28(4):631-43. DOI: 10.1016/j.cmet.2018.07.004
CrossRef
PubMed PubMedCentral
- Barbalho SM, Flato UAP, Tofano RJ, Goulart RDA, Guiguer EL, Detregiachi CRP, et al. Physical exercise and myokines: relationships with sarcopenia and cardioС.Н. Вадзюк, П.С. Табас, Л.І. Горбань, І.Я. Папінко, І.Г. Бідзюра 104 vascular complications. Int J Mol Sci. 2020;21(10):3607. DOI: 10.3390/ijms21103607
CrossRef
PubMed PubMedCentral
- Lyu JX, Guo DD, Song YC, Zhang MR, Ge FQ, Zhao J, et al. Circulating myokines as novel biomarkers for cardiovascular diseases. Rev Cardiovascul Med. 2024;25(2):56. DOI: 10.31083/j.rcm2502056
CrossRef
PubMed PubMedCentral
- De Oliveira Dos Santos AR, De Oliveira Zanuso B, Miola VFB, Barbalho SM, Santos Bueno PC, Flato UAP, et al. Adipokines, myokines, and hepatokines: crosstalk and metabolic repercussions. Int J Mol Sci. 2021;22(5):2639. DOI: 10.3390/ijms22052639
CrossRef
PubMed PubMedCentral
- Ou-Yang WL, Guo B, Xu F, Lin X, Li FXZ, Shan SK, et al. The controversial role of irisin in clinical management of coronary heart disease. Front Endocrinol. 2021;12:20. DOI: 10.3389/fendo.2021.678309
CrossRef
PubMed PubMedCentral
- Bubak M, Heesch MWS, Shute RJ, Dinan NE, Laursen TL, La Salle DT, et al. Irisin and fibronectin type iii domain-containing 5 responses to exercise in different environmental conditions. Int J Exe Sci. 2017;10(5):666- 80. DOI: 10.70252/XKMW8211
CrossRef
PubMed PubMedCentral
- Tang S, Zhang R, Jiang F, Wang J, Chen M, Peng D, et al. Circulating irisin levels are associated with lipid and uric acid metabolism in a Chinese population. Clin Exp Pharmacol Physiol. 2015;42(9):896-901. DOI: 10.1111/1440-1681.12439
CrossRef
PubMed
- Kim H, Wrann CD, Jedrychowski M, Vidoni S, Kitase Y , Nagano K, et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell. 2018;175(7):1756-68. DOI: 10.1016/j.cell.2018.10.025
CrossRef
PubMed PubMedCentral
- Zhang H, Wu X, Liang J, Kirberger M, Chen N. Irisin, an exercise-induced bioactive peptide beneficial for health promotion during aging process. Ageing Res Rev. 2022;80:101. DOI: 10.1016/j.arr.2022.101680
CrossRef
PubMed
- Löffler D, Müller U, Scheuermann K, Friebe D, Gesing J, Bielitz J, et al. Serum irisin levels are regulated by acute strenuous exercise. J Clin Endocrinol Metab. 2015;100(4):1289-99. DOI: 10.1210/jc.2014-2932
CrossRef
PubMed
- Pan J an, Zhang H, Lin H, Gao L, Zhang H li, Zhang J feng, et al. Irisin ameliorates doxorubicin-induced cardiac perivascular fibrosis through inhibiting endothelial-tomesenchymal transition by regulating ROS accumulation and autophagy disorder in endothelial cells. Redox Biol. 2021;46:55. DOI: 10.1016/j.redox.2021.102120
CrossRef
PubMed PubMedCentral
- Tsuchiya Y , Ando D, Takamatsu K, Goto K. Resistance exercise induces a greater irisin response than endurance exercise. Metabolism. 2015;64(9):1042-50. DOI: 10.1016/j.metabol.2015.05.010
CrossRef
PubMed
- Sattar N, Gill JMR, Alazawi W. Improving preven-tion strategies for cardiometabolic disease. Nat Med. 2020;26(3):320-5. DOI: 10.1038/s41591-020-0786-7
CrossRef
PubMed
- Li H, Qin S, Liang Q, Xi Y , Bo W, Cai M, et al. Exercise training enhances myocardial mitophagy and improves cardiac function via irisin/FNDC5-PINK1/parkin pathway in MI mice. Biomedicines. 2021;9(6):701. DOI: 10.3390/biomedicines9060701
CrossRef
PubMed PubMedCentral
- Li R, Wang X, Wu S, Wu Y , Chen H, Xin J, et al. Irisin ame-liorates angiotensin II‐induced cardiomyocyte apoptosis through autophagy. J Cell Physiol. 2019;234(10):17578- 88. DOI: 10.1002/jcp.28382
CrossRef
PubMed
- Byun K, Lee S. The potential role of irisin in vascular function and atherosclerosis: A review. Int J Mol Sci. 2020;21(19):7184. DOI: 10.3390/ijms21197184
CrossRef
PubMed PubMedCentral
- Ho MY , Wang CY . Role of irisin in myocardial infarc-tion, heart failure, and cardiac hypertrophy. Cells. 2021;10(8):2103. DOI: 10.3390/cells10082103
CrossRef
PubMed PubMedCentral
- Huerta-Delgado AS, Roffe-Vazquez DN, Luna-Ceron E, Gonzalez-Gil AM, Casillas-Fikentscher A, VillarrealCalderon JR, et al. Association of irisin levels with cardiac magnetic resonance, inflammatory, and biochemical parameters in patients with chronic heart failure versus controls. Magn Reson Imag. 2022;93:62-72. DOI: 10.1016/j.mri.2022.07.006
CrossRef
PubMed
- Zhang H, Wu X, Liang J, Kirberger M, Chen N. Irisin, an exercise-induced bioactive peptide beneficial for health promotion during aging process. Ageing Res Rev. 2022;80:92. DOI: 10.1016/j.arr.2022.101680
CrossRef
PubMed
- Kim H jae, So B, Choi M, Kang D, Song W. Resistance exercise training increases the expression of irisin concomitant with improvement of muscle function in aging mice and humans. Exp Gerontol. 2015;70:11-7. DOI: 10.1016/j.exger.2015.07.006
CrossRef
PubMed
- Ouchi N, Walsh K. Cardiovascular and metabolic regulation by the adiponectin/C1q/tumor necrosis factor-related protein family of proteins. Circulation. 2012;125(25):3066-8. DOI: 10.1161/CIRCULATIONAHA.112.114181
CrossRef
PubMed
- Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem. 2012;287(15):11968-80. DOI: 10.1074/jbc.M111.336834
CrossRef
PubMed PubMedCentral
- Seldin MM, Lei X, Tan SY , Stanson KP, Wei Z, Wong GW. Skeletal muscle-derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver. J Biol Chem. 2013;288(50):36073-82. DOI: 10.1074/jbc.M113.500736
CrossRef
PubMed PubMedCentral
- Kautz L, Jung G, Valore EV , Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678-84. DOI: 10.1038/ng.2996
CrossRef
PubMed PubMedCentral
- Otaka N, Shibata R, Ohashi K, Uemura Y , Kambara T, Enomoto T, et al. Myonectin is an exercise-induced myokine that protects the heart from ischemia-reperfusion injury. Circ Res. 2018;123(12):1326-38. DOI: 10.1161/ CIRCRESAHA.118.313777
CrossRef
PubMed
- Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 2000;101(6):660-7. DOI: 10.1161/ CIRCRESAHA.118.313777
CrossRef
PubMed PubMedCentral
- Guha M, Mackman N. The phosphatidylinositol 3-ki-nase-akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem. 2002;277(35):32124-32. DOI: 10.1074/jbc.M203298200 Вплив міокінів на серцево-судинну систему 105
CrossRef
PubMed
- Möbius-Winkler S, Uhlemann M, Adams V , Sandri M, Erbs S, Lenk K, et al. Coronary collateral growth induced by physical exercise: Results of the impact of intensive exercise training on coronary collateral circulation in patients with stable coronary artery disease (EXCITE) trial. Circulation. 2016;133(15):1438-48. DOI: 10.1161/ CIRCULATIONAHA.115.016442
CrossRef
PubMed
- Alzaabi AMMA, Muthukrishnan R, Ismail M, Kandakur thi PK, Durairaj S, Sukumar S, et al. Exercise, myonectin response, and insulin resistance among overweight, obese and healthy individuals: a systematic review and narrative synthesis. J Med Life. 2025;18(2):73-89. DOI: 10.25122/jml-2024-0277
CrossRef
PubMed PubMedCentral
- Severinsen MCK, Pedersen BK. Muscle-organ cross-talk: The emerging roles of myokines. Endocrinol Rev. 2020;41(4):594-609. DOI: 10.1210/endrev/bnaa016
CrossRef
PubMed PubMedCentral
- Chen MM, Zhao YP, Zhao Y , Deng SL, Yu K. Regulation of myostatin on the growth and development of skeletal muscle. Front Cell Dev Biol. 2021;9:12. DOI: 10.3389/ fcell.2021.785712
CrossRef
PubMed PubMedCentral
- Lee EJ, Shaikh S, Baig MH, Park SY , Lim JH, Ahmad SS, et al. MIF1 and MIF2 myostatin peptide inhibitors as potent muscle mass regulators. Int J Mol Sci. 2022;23(8):4222. DOI: 10.3390/ijms23084222
CrossRef
PubMed PubMedCentral
- Castillero E, Akashi H, Najjar M, Ji R, Brandstetter LM, Wang C, et al. Activin type II receptor ligand signaling inhibition after experimental ischemic heart failure attenuates cardiac remodeling and prevents fibrosis. Am J Physiol-Heart Circ Physiol. 2020;318(2):378-90. DOI: 10.1152/ajpheart.00302.2019
CrossRef
PubMed PubMedCentral
- Meloux A, Rochette L, Maza M, Bichat F, Tribouillard L, Cottin Y , et al. Growth differentiation factor-8 (GDF8)/ myostatin is a predictor of troponin I peak and a marker of clinical severity after acute myocardial infarction. J Clin Med. 2019;9(1):116. DOI: 10.3390/jcm9010116
CrossRef
PubMed PubMedCentral
- Matsumoto H, Matsumura K, Yamamoto Y, Fujii K, Tsujimoto S, Otagaki M, et al. Prognostic Value of Psoas Muscle Mass Index in Patients With Non-STSegment-Elevation Myocardial Infarction: A Prospective Observational Study. JAHA. 2020;9(19). DOI: 10.1161/ JAHA.120.017315
CrossRef
PubMed PubMedCentral
- Oliveira PGS, Schwed JF, Chiuso-Minicucci F, Duarte SRS, Nascimento LM, Dorna MS, et al. Association between serum myostatin levels, hospital mortality, and muscle mass and strength following ST-elevation myocardial infarction. Heart Lung Circ. 2022;31(3):365-71. DOI: 10.1016/j.hlc.2021.08.018
CrossRef
PubMed
- Pucci G, Ministrini S, Nulli Migliola E, Nunziangeli L, Battista F, D'Abbondanza M, et al. Relationship between serum myostatin levels and carotid-femoral pulse wave velocity in healthy young male adolescents: the MACISTE study. J Appl Physiol. 2021;130(4):987-92. DOI: 10.1152/japplphysiol.00782.2020
CrossRef
PubMed
- Esposito P, Verzola D, Picciotto D, Cipriani L, Viazzi F, Garibotto G. Myostatin/activin-a signaling in the vessel wall and vascular calcification. Cells. 2021;10(8):2070. DOI: 10.3390/cells10082070
CrossRef
PubMed PubMedCentral
- Esposito P, Verzola D, Porta EL, Milanesi S, Grignano MA, Avella A, et al. Myostatin in the arterial wall of patients with end-stage renal disease. J Atheroscler Thromb. 2020;27(10):1039-52. DOI: 10.5551/jat.51144
CrossRef
PubMed PubMedCentral
- Castrén E, Monteggia LM. Brain-derived neurotrophic factor signaling in depression and antidepressant action. Biol Psychiatr. 2021;90(2):128-36. DOI: 10.1016/j. biopsych.2021.05.008
CrossRef
PubMed
- Esmaeili F, Mansouri E, Emami MA, Montazerghaem H, Hosseini Teshnizi S, Kheirandish M, et al. Association of serum level and DNA methylation status of brain-derived neurotrophic factor with the severity of coronary artery disease. Ind J Clin Biochem. 2022;37(2):159-68. DOI: 10.1007/s12291-021-00974-1
CrossRef
PubMed PubMedCentral
- Feng N, Huke S, Zhu G, Tocchetti CG, Shi S, Aiba T, et al. Constitutive BDNF/TrkB signaling is required for normal cardiac contraction and relaxation. Proc Natl Acad Sci USA. 2015;112(6):1880-5. DOI: 10.1073/pnas.1417949112
CrossRef
PubMed PubMedCentral
- Kaess BM, Preis SR, Lieb W, Beiser AS, Yang Q, Chen TC, et al. Circulating brain‐derived neurotrophic factor concentrations and the risk of cardiovascular disease in the community. J Am Heart Assoc. 2015;4(3). DOI: 10.1161/JAHA.114.001544
CrossRef
PubMed PubMedCentral
- Okada S, Yokoyama M, Toko H, Tateno K, Moriya J, Shimizu I, et al. Brain-derived neurotrophic factor protects against cardiac dysfunction after myocardial infarction via a central nervous system-mediated pathway. Arterioscler Thromb Vascul Biol. 2012;32(8):1902- 9. DOI: 10.1161/ATVBAHA.112.248930
CrossRef
PubMed
- Yang X, Zhang M, Xie B, Peng Z, Manning JR, Zimmer-man R, et al. Myocardial brain-derived neurotrophic factor regulates cardiac bioenergetics through the transcription factor Yin Yang 1. Cardiovascul Res. 2023;119(2):571-86. DOI: 10.1093/cvr/cvac096
CrossRef
PubMed PubMedCentral
- Wang Z, Wang S peng, Shao Q, Li P feng, Sun Y , Luo L zi, et al. Brain-derived neurotrophic factor mimetic, 7,8-dihydroxyflavone, protects against myocardial ischemia by rebalancing optic atrophy 1 processing. Free Radic Biol Med. 2019;145:187-97. DOI: 10.1016/j. freeradbiomed.2019.09.033
CrossRef
PubMed
- Lee IT, Li YH, Sheu WHH. Brain-derived neurotrophic factor during oral glucose tolerance test predicts cardiovascular outcomes. Int J Mol Sci. 2020;21(14):5008. DOI: 10.3390/ijms21145008
CrossRef
PubMed PubMedCentral
- Shibata A, Hanatani A, Izumi Y, Kitada R, Iwata S, Yoshiyama M. Serum brain-derived neurotrophic factor level and exercise tolerance complement each other in predicting the prognosis of patients with heart failure. Heart Vessels. 2018;33(11):1325-33. DOI: 10.1007/ s00380-018-1174-9
CrossRef
PubMed
- Halloway S, Jung M, Yeh AY, Liu J, McAdams E, Barley M, et al. An integrative review of brainderived neurotrophic factor and serious cardiovascular conditions. Nurs Res. 2020;69(5):376-90. DOI: 10.1097/ NNR.0000000000000454.
CrossRef
PubMed PubMedCentral
|