Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(5): 98-105


THE INFLUENCE OF MYOKINES ON THE CARDIOVASCULAR SYSTEM

S.N. Vadzyuk1, P.S. Tabas1, L.I. Gorban1, I.Ya. Papinko1, I.G. Bidzyura2

  1. I. Horbachevsky Ternopil National Medical University, Ukraine
  2. Municipal Institution of Higher Education «Volyn Medical Institute» of the Volyn Oblast Council, Lutsk, Ukraine
DOI: https://doi.org/10.15407/fz71.05.098


Abstract

Myokines (such as irisin, myonectin, myostatin, and brain- derived neurotrophic factor) are secreted by skeletal muscles in response to exercise and significantly affect the cardiovascular system. Irisin prevents the development and progression of heart failure, ischemic heart disease, sarcopenia, and other diseases by reducing inflammation, improving antioxidant defense, preventing cardiomyocyte apoptosis, and stimulating angiogenesis. Myonectin enhances protective processes in the heart during ischemic injury by reducing apoptosis and inflam- matory reactions in the myocardium. Conversely, myostatin is associated with the development of heart failure, athero- sclerosis, and vascular aging; its overexpression negatively affects the state of the cardiovascular system. Brain-derived neurotrophic factor is involved in the regulation of cardiac function and is a promising biomarker for predicting the course of cardiac activity. Regular physical activity, by stimulating the secretion of cardioprotective myokines, reduces the risk of developing ischemic heart disease, heart failure, and associated metabolic disorders. Determining myokine levels in peripheral blood has the potential for early diagnosis and risk assessment of cardiovascular events, opening up new opportunities for personalized therapy.

Keywords: myokines, cardiovascular system, hypertension, ischemic heart disease, endocrine system, sarcopenia, physical activity

References

  1. Otaka N, Shibata R, Ohashi K, Uemura Y , Kambara T, Enomoto T, et al. Myonectin is an exercise-induced myokine that protects the heart from ischemia-reperfusion injury. Circ Res. 2018;123(12):1326-38. DOI: 10.1161/ CIRCRESAHA.118.313777
  2. CrossRef PubMed
  3. Hupin D, Edouard P, Gremeaux V, Garet M, Celle S, Pichot V, et al. Physical activity to reduce mortality risk. Eur Heart J. 2017;38(20):1534-7. DOI: 10.1093/ eurheartj/ehx236
  4. CrossRef PubMed
  5. Kodama S. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA. 2009;301(19):2024. DOI: 10.1001/jama.2009.681
  6. CrossRef PubMed
  7. Möbius-Winkler S, Uhlemann M, Adams V , Sandri M, Erbs S, Lenk K, et al. Coronary collateral growth induced by physical exercise: results of the impact of intensive exercise training on coronary collateral circulation in patients with stable coronary artery disease (EXCITE) trial. Circulation. 2016;133(15):1438-48. DOI: 10.1161/ CIRCULATIONAHA.115.016442
  8. CrossRef PubMed
  9. Ouchi N, Ohashi K, Shibata R, Murohara T. Protective roles of adipocytokines and myokines in cardiovascular disease. Circ J. 2016;80(10):2073-80. DOI: 10.1253/ circj.CJ-16-0663
  10. CrossRef PubMed
  11. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24(2- 3):113-9. DOI: 10.1023/a:1026070911202
  12. CrossRef.1023/A:1026070911202 PubMed
  13. Ramírez-Vélez R, González A, García-Hermoso A, Amézqueta IL, Izquierdo M, Díez J. Revisiting skeletal myopathy and exercise training in heart failure: Emerging role of myokines. Metabolism. 2023;138: 48. DOI: 10.1016/j.metabol.2022.155348
  14. CrossRef PubMed
  15. Ataeinosrat A, Saeidi A, Abednatanzi H, Rahmani H, Daloii AA, Pashaei Z, et al. Intensity dependent effects of interval resistance training on myokines and cardiovascular risk factors in males with obesity. Front Endocrinol. 2022;13:15. DOI: 10.3389/fendo.2022.895512
  16. CrossRef PubMed PubMedCentral
  17. Chow LS, Gerszten RE, Taylor JM, Pedersen BK, Van Praag H, Trappe S, et al. Exerkines in health, resilience and disease. Nat Rev Endocrinol. 2022;18(5):273-89. DOI: 10.1038/s41574-022-00641-2
  18. CrossRef PubMed PubMedCentral
  19. Kong X, Yao T, Zhou P, Kazak L, Tenen D, Lyubetskaya A, et al. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. Cell Metab. 2018;28(4):631-43. DOI: 10.1016/j.cmet.2018.07.004
  20. CrossRef PubMed PubMedCentral
  21. Barbalho SM, Flato UAP, Tofano RJ, Goulart RDA, Guiguer EL, Detregiachi CRP, et al. Physical exercise and myokines: relationships with sarcopenia and cardioС.Н. Вадзюк, П.С. Табас, Л.І. Горбань, І.Я. Папінко, І.Г. Бідзюра 104 vascular complications. Int J Mol Sci. 2020;21(10):3607. DOI: 10.3390/ijms21103607
  22. CrossRef PubMed PubMedCentral
  23. Lyu JX, Guo DD, Song YC, Zhang MR, Ge FQ, Zhao J, et al. Circulating myokines as novel biomarkers for cardiovascular diseases. Rev Cardiovascul Med. 2024;25(2):56. DOI: 10.31083/j.rcm2502056
  24. CrossRef PubMed PubMedCentral
  25. De Oliveira Dos Santos AR, De Oliveira Zanuso B, Miola VFB, Barbalho SM, Santos Bueno PC, Flato UAP, et al. Adipokines, myokines, and hepatokines: crosstalk and metabolic repercussions. Int J Mol Sci. 2021;22(5):2639. DOI: 10.3390/ijms22052639
  26. CrossRef PubMed PubMedCentral
  27. Ou-Yang WL, Guo B, Xu F, Lin X, Li FXZ, Shan SK, et al. The controversial role of irisin in clinical management of coronary heart disease. Front Endocrinol. 2021;12:20. DOI: 10.3389/fendo.2021.678309
  28. CrossRef PubMed PubMedCentral
  29. Bubak M, Heesch MWS, Shute RJ, Dinan NE, Laursen TL, La Salle DT, et al. Irisin and fibronectin type iii domain-containing 5 responses to exercise in different environmental conditions. Int J Exe Sci. 2017;10(5):666- 80. DOI: 10.70252/XKMW8211
  30. CrossRef PubMed PubMedCentral
  31. Tang S, Zhang R, Jiang F, Wang J, Chen M, Peng D, et al. Circulating irisin levels are associated with lipid and uric acid metabolism in a Chinese population. Clin Exp Pharmacol Physiol. 2015;42(9):896-901. DOI: 10.1111/1440-1681.12439
  32. CrossRef PubMed
  33. Kim H, Wrann CD, Jedrychowski M, Vidoni S, Kitase Y , Nagano K, et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell. 2018;175(7):1756-68. DOI: 10.1016/j.cell.2018.10.025
  34. CrossRef PubMed PubMedCentral
  35. Zhang H, Wu X, Liang J, Kirberger M, Chen N. Irisin, an exercise-induced bioactive peptide beneficial for health promotion during aging process. Ageing Res Rev. 2022;80:101. DOI: 10.1016/j.arr.2022.101680
  36. CrossRef PubMed
  37. Löffler D, Müller U, Scheuermann K, Friebe D, Gesing J, Bielitz J, et al. Serum irisin levels are regulated by acute strenuous exercise. J Clin Endocrinol Metab. 2015;100(4):1289-99. DOI: 10.1210/jc.2014-2932
  38. CrossRef PubMed
  39. Pan J an, Zhang H, Lin H, Gao L, Zhang H li, Zhang J feng, et al. Irisin ameliorates doxorubicin-induced cardiac perivascular fibrosis through inhibiting endothelial-tomesenchymal transition by regulating ROS accumulation and autophagy disorder in endothelial cells. Redox Biol. 2021;46:55. DOI: 10.1016/j.redox.2021.102120
  40. CrossRef PubMed PubMedCentral
  41. Tsuchiya Y , Ando D, Takamatsu K, Goto K. Resistance exercise induces a greater irisin response than endurance exercise. Metabolism. 2015;64(9):1042-50. DOI: 10.1016/j.metabol.2015.05.010
  42. CrossRef PubMed
  43. Sattar N, Gill JMR, Alazawi W. Improving preven-tion strategies for cardiometabolic disease. Nat Med. 2020;26(3):320-5. DOI: 10.1038/s41591-020-0786-7
  44. CrossRef PubMed
  45. Li H, Qin S, Liang Q, Xi Y , Bo W, Cai M, et al. Exercise training enhances myocardial mitophagy and improves cardiac function via irisin/FNDC5-PINK1/parkin pathway in MI mice. Biomedicines. 2021;9(6):701. DOI: 10.3390/biomedicines9060701
  46. CrossRef PubMed PubMedCentral
  47. Li R, Wang X, Wu S, Wu Y , Chen H, Xin J, et al. Irisin ame-liorates angiotensin II‐induced cardiomyocyte apoptosis through autophagy. J Cell Physiol. 2019;234(10):17578- 88. DOI: 10.1002/jcp.28382
  48. CrossRef PubMed
  49. Byun K, Lee S. The potential role of irisin in vascular function and atherosclerosis: A review. Int J Mol Sci. 2020;21(19):7184. DOI: 10.3390/ijms21197184
  50. CrossRef PubMed PubMedCentral
  51. Ho MY , Wang CY . Role of irisin in myocardial infarc-tion, heart failure, and cardiac hypertrophy. Cells. 2021;10(8):2103. DOI: 10.3390/cells10082103
  52. CrossRef PubMed PubMedCentral
  53. Huerta-Delgado AS, Roffe-Vazquez DN, Luna-Ceron E, Gonzalez-Gil AM, Casillas-Fikentscher A, VillarrealCalderon JR, et al. Association of irisin levels with cardiac magnetic resonance, inflammatory, and biochemical parameters in patients with chronic heart failure versus controls. Magn Reson Imag. 2022;93:62-72. DOI: 10.1016/j.mri.2022.07.006
  54. CrossRef PubMed
  55. Zhang H, Wu X, Liang J, Kirberger M, Chen N. Irisin, an exercise-induced bioactive peptide beneficial for health promotion during aging process. Ageing Res Rev. 2022;80:92. DOI: 10.1016/j.arr.2022.101680
  56. CrossRef PubMed
  57. Kim H jae, So B, Choi M, Kang D, Song W. Resistance exercise training increases the expression of irisin concomitant with improvement of muscle function in aging mice and humans. Exp Gerontol. 2015;70:11-7. DOI: 10.1016/j.exger.2015.07.006
  58. CrossRef PubMed
  59. Ouchi N, Walsh K. Cardiovascular and metabolic regulation by the adiponectin/C1q/tumor necrosis factor-related protein family of proteins. Circulation. 2012;125(25):3066-8. DOI: 10.1161/CIRCULATIONAHA.112.114181
  60. CrossRef PubMed
  61. Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem. 2012;287(15):11968-80. DOI: 10.1074/jbc.M111.336834
  62. CrossRef PubMed PubMedCentral
  63. Seldin MM, Lei X, Tan SY , Stanson KP, Wei Z, Wong GW. Skeletal muscle-derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver. J Biol Chem. 2013;288(50):36073-82. DOI: 10.1074/jbc.M113.500736
  64. CrossRef PubMed PubMedCentral
  65. Kautz L, Jung G, Valore EV , Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678-84. DOI: 10.1038/ng.2996
  66. CrossRef PubMed PubMedCentral
  67. Otaka N, Shibata R, Ohashi K, Uemura Y , Kambara T, Enomoto T, et al. Myonectin is an exercise-induced myokine that protects the heart from ischemia-reperfusion injury. Circ Res. 2018;123(12):1326-38. DOI: 10.1161/ CIRCRESAHA.118.313777
  68. CrossRef PubMed
  69. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 2000;101(6):660-7. DOI: 10.1161/ CIRCRESAHA.118.313777
  70. CrossRef PubMed PubMedCentral
  71. Guha M, Mackman N. The phosphatidylinositol 3-ki-nase-akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem. 2002;277(35):32124-32. DOI: 10.1074/jbc.M203298200 Вплив міокінів на серцево-судинну систему 105
  72. CrossRef PubMed
  73. Möbius-Winkler S, Uhlemann M, Adams V , Sandri M, Erbs S, Lenk K, et al. Coronary collateral growth induced by physical exercise: Results of the impact of intensive exercise training on coronary collateral circulation in patients with stable coronary artery disease (EXCITE) trial. Circulation. 2016;133(15):1438-48. DOI: 10.1161/ CIRCULATIONAHA.115.016442
  74. CrossRef PubMed
  75. Alzaabi AMMA, Muthukrishnan R, Ismail M, Kandakur thi PK, Durairaj S, Sukumar S, et al. Exercise, myonectin response, and insulin resistance among overweight, obese and healthy individuals: a systematic review and narrative synthesis. J Med Life. 2025;18(2):73-89. DOI: 10.25122/jml-2024-0277
  76. CrossRef PubMed PubMedCentral
  77. Severinsen MCK, Pedersen BK. Muscle-organ cross-talk: The emerging roles of myokines. Endocrinol Rev. 2020;41(4):594-609. DOI: 10.1210/endrev/bnaa016
  78. CrossRef PubMed PubMedCentral
  79. Chen MM, Zhao YP, Zhao Y , Deng SL, Yu K. Regulation of myostatin on the growth and development of skeletal muscle. Front Cell Dev Biol. 2021;9:12. DOI: 10.3389/ fcell.2021.785712
  80. CrossRef PubMed PubMedCentral
  81. Lee EJ, Shaikh S, Baig MH, Park SY , Lim JH, Ahmad SS, et al. MIF1 and MIF2 myostatin peptide inhibitors as potent muscle mass regulators. Int J Mol Sci. 2022;23(8):4222. DOI: 10.3390/ijms23084222
  82. CrossRef PubMed PubMedCentral
  83. Castillero E, Akashi H, Najjar M, Ji R, Brandstetter LM, Wang C, et al. Activin type II receptor ligand signaling inhibition after experimental ischemic heart failure attenuates cardiac remodeling and prevents fibrosis. Am J Physiol-Heart Circ Physiol. 2020;318(2):378-90. DOI: 10.1152/ajpheart.00302.2019
  84. CrossRef PubMed PubMedCentral
  85. Meloux A, Rochette L, Maza M, Bichat F, Tribouillard L, Cottin Y , et al. Growth differentiation factor-8 (GDF8)/ myostatin is a predictor of troponin I peak and a marker of clinical severity after acute myocardial infarction. J Clin Med. 2019;9(1):116. DOI: 10.3390/jcm9010116
  86. CrossRef PubMed PubMedCentral
  87. Matsumoto H, Matsumura K, Yamamoto Y, Fujii K, Tsujimoto S, Otagaki M, et al. Prognostic Value of Psoas Muscle Mass Index in Patients With Non-STSegment-Elevation Myocardial Infarction: A Prospective Observational Study. JAHA. 2020;9(19). DOI: 10.1161/ JAHA.120.017315
  88. CrossRef PubMed PubMedCentral
  89. Oliveira PGS, Schwed JF, Chiuso-Minicucci F, Duarte SRS, Nascimento LM, Dorna MS, et al. Association between serum myostatin levels, hospital mortality, and muscle mass and strength following ST-elevation myocardial infarction. Heart Lung Circ. 2022;31(3):365-71. DOI: 10.1016/j.hlc.2021.08.018
  90. CrossRef PubMed
  91. Pucci G, Ministrini S, Nulli Migliola E, Nunziangeli L, Battista F, D'Abbondanza M, et al. Relationship between serum myostatin levels and carotid-femoral pulse wave velocity in healthy young male adolescents: the MACISTE study. J Appl Physiol. 2021;130(4):987-92. DOI: 10.1152/japplphysiol.00782.2020
  92. CrossRef PubMed
  93. Esposito P, Verzola D, Picciotto D, Cipriani L, Viazzi F, Garibotto G. Myostatin/activin-a signaling in the vessel wall and vascular calcification. Cells. 2021;10(8):2070. DOI: 10.3390/cells10082070
  94. CrossRef PubMed PubMedCentral
  95. Esposito P, Verzola D, Porta EL, Milanesi S, Grignano MA, Avella A, et al. Myostatin in the arterial wall of patients with end-stage renal disease. J Atheroscler Thromb. 2020;27(10):1039-52. DOI: 10.5551/jat.51144
  96. CrossRef PubMed PubMedCentral
  97. Castrén E, Monteggia LM. Brain-derived neurotrophic factor signaling in depression and antidepressant action. Biol Psychiatr. 2021;90(2):128-36. DOI: 10.1016/j. biopsych.2021.05.008
  98. CrossRef PubMed
  99. Esmaeili F, Mansouri E, Emami MA, Montazerghaem H, Hosseini Teshnizi S, Kheirandish M, et al. Association of serum level and DNA methylation status of brain-derived neurotrophic factor with the severity of coronary artery disease. Ind J Clin Biochem. 2022;37(2):159-68. DOI: 10.1007/s12291-021-00974-1
  100. CrossRef PubMed PubMedCentral
  101. Feng N, Huke S, Zhu G, Tocchetti CG, Shi S, Aiba T, et al. Constitutive BDNF/TrkB signaling is required for normal cardiac contraction and relaxation. Proc Natl Acad Sci USA. 2015;112(6):1880-5. DOI: 10.1073/pnas.1417949112
  102. CrossRef PubMed PubMedCentral
  103. Kaess BM, Preis SR, Lieb W, Beiser AS, Yang Q, Chen TC, et al. Circulating brain‐derived neurotrophic factor concentrations and the risk of cardiovascular disease in the community. J Am Heart Assoc. 2015;4(3). DOI: 10.1161/JAHA.114.001544
  104. CrossRef PubMed PubMedCentral
  105. Okada S, Yokoyama M, Toko H, Tateno K, Moriya J, Shimizu I, et al. Brain-derived neurotrophic factor protects against cardiac dysfunction after myocardial infarction via a central nervous system-mediated pathway. Arterioscler Thromb Vascul Biol. 2012;32(8):1902- 9. DOI: 10.1161/ATVBAHA.112.248930
  106. CrossRef PubMed
  107. Yang X, Zhang M, Xie B, Peng Z, Manning JR, Zimmer-man R, et al. Myocardial brain-derived neurotrophic factor regulates cardiac bioenergetics through the transcription factor Yin Yang 1. Cardiovascul Res. 2023;119(2):571-86. DOI: 10.1093/cvr/cvac096
  108. CrossRef PubMed PubMedCentral
  109. Wang Z, Wang S peng, Shao Q, Li P feng, Sun Y , Luo L zi, et al. Brain-derived neurotrophic factor mimetic, 7,8-dihydroxyflavone, protects against myocardial ischemia by rebalancing optic atrophy 1 processing. Free Radic Biol Med. 2019;145:187-97. DOI: 10.1016/j. freeradbiomed.2019.09.033
  110. CrossRef PubMed
  111. Lee IT, Li YH, Sheu WHH. Brain-derived neurotrophic factor during oral glucose tolerance test predicts cardiovascular outcomes. Int J Mol Sci. 2020;21(14):5008. DOI: 10.3390/ijms21145008
  112. CrossRef PubMed PubMedCentral
  113. Shibata A, Hanatani A, Izumi Y, Kitada R, Iwata S, Yoshiyama M. Serum brain-derived neurotrophic factor level and exercise tolerance complement each other in predicting the prognosis of patients with heart failure. Heart Vessels. 2018;33(11):1325-33. DOI: 10.1007/ s00380-018-1174-9
  114. CrossRef PubMed
  115. Halloway S, Jung M, Yeh AY, Liu J, McAdams E, Barley M, et al. An integrative review of brainderived neurotrophic factor and serious cardiovascular conditions. Nurs Res. 2020;69(5):376-90. DOI: 10.1097/ NNR.0000000000000454.
  116. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.