Enlarged Ca[sup]2+[/sup]-independent release of glutamatefrom synaptosomes under centrifuge-induced hypergravity modeling
O.A. Borisova, N.V. Krisanova.
Ин-т биохимии им. А.В.Палладина НАН Украины, Киев
Abstract
The release of L-[14C]glutamate via Na+-dependent glutamate
transporters functioned in the reverse mode was investigated
in cortical synaptosomes under centrifuge-induced hyper-
gravity. The protonophore carbonyl cyanide-p-trifluoro-
methoxyphenyl-hydrazon (FCCP) induced increase in [Na+]i,
depolarized the plasma membrane, dissipated the proton gra-
dient across synaptic vesicles and mitochondrial membrane,
caused a fall in both the ATP level and the ATP/ADP ratio. 35
mM KCl-stimulated L-[14C]glutamate release from synapto-
somes preliminary treated with 1 µM FCCP considerably
increased from 27.0±2.2 % to 35.0±2.3 % of total accumu-
lated synaptosomal label after centrifuge-induced hypergravity
as compared to control animals (Р<0.05). We found the
competitive nontransportable glutamate transporter inhibitor
DL-threo-?-benzyloxyaspartate to inhibit FCCP and high
KCL-stimulated release of L-[14C]glutamate. The release would
be expected to occur via plasma membrane glutamate trans-
porters. Transportable inhibitor of glutamate transporters-
DL-threo-beta-hydroxyaspartate (DL-THA) induced
heteroexchange of L-[14C]glutamate from enlarged by FCCP
cytosolic pool of the neurotransmitter. DL-THA-evoked
release of L-[14C]glutamate was also increased significantly
after hypergravity. Combined application of KCl, DL-THA
and FCCP unmasked dramatic changes in the activity of the
glutamate transporters functioning in the reverse mode after
centrifuge-induced G-loading.
References
- Bloogg S., Gennser M. Cerebral blood flow veloc- ity and psychomotor performance during acute hy- poxia // Aviation, Space and Environmental Med. – 2006. – 77. – Р. 107–111.
- Borisova T.A., Krisanova N.V., Himmelreich N.H. Arti- ficial gravity and functional plasticity of nerve system L- [14C]-glutamate uptake by nerve terminals from rat cer- ebellum and cerebral hemispheres under hypergravity stress // J. Gravitat. Physiol. – 2002. – 9(1) – Р. 25–26.
- Borisova T.A., Krisanova N.V., Himmelreich N.H. Ex- posure of animals to artificial gravity conditions leads to the alteration of the glutamate release from rat cere- bral hemispheres nerve terminals // Adv. Space Res. – 2004. – 33. – Р.1362–1367.
- Borisova T.A., Himmelreich N.H. Effects of the in- hibitors on glutamate uptake by nerve terminals after exposure of rats to centrifuge – induced hypergravity // J. Gravitat. Physiol. – 2004. – 11 (2). – Р.37–38.
- Borisova T.A., Himmelreich N.H. Centrifuge-Induced Hypergravity: [3H]GABA and L-[14C]glutamate Up- take, Exocytosis and Efflux Mediated by High-Affini- ty, Sodium-Dependent Transporters // Adv. Space Res. – 2005. – 36. – Р.1340–1345.
- Borisova T.A., Krisanova N.V., Himmelreich N.H. Artificial gravity loading increases the effects of the glutamate transporter inhibitors on the glutamate release and uptake in rat brain nerve terminals // Micrograv. Sci. and technol. – 2006. – XVIII-3/4. – Р.230–233.
- Cai Q., Liu H., Zhan Z. et al. A study of apoptosis and related gene bcl-2 and p53 expression in hippocampus of rats exposed to repeated +Gz // Space Med. Eng. (Beijing). – 2000. – 13. – Р.263–266.
- Cidon S., Sihra T. Characterization of an H+-ATPase in Rat Brain Synaptic Vesicles // JBC. – 1989. – 264. – Р.8281–8288.
- 9. Cotman C. W. Isolation of synaptosomal and synaptic plasma membrane fractions // Methods Enzymol. – 1974. – 31. – Р.445–452.
- 10. Cousin M.A., Robinson P.J. Two mechanisms of syn- vesicle recycling in rat brain nerve terminals // J. Neurochem. – 2000. – 75. – Р.1645–1653. Рис. 2. Индуцированное 1 мкмоль/л FCCP и 35 ммоль/л KCl (а) высвобождение L-[14C]глутамата в бескальциевой среде за 10 мин из синаптосом контрольных животных (1) и животных после гравитационной нагрузки (2) и 1 FCCP и 100 мкмоль/л DL-трео-?-гидроксиаспартата (б)Высвобождение глутамата из цитозольного пула синаптосом
- ISSN 0201-8489 Фізіол. журн., 2008, Т. 54, № 2 99
- Danbolt N.C. Glutamate uptake // Progr. Neurobiol. – 2001. – 65. – Р.1–105.
- Fonnum F. Glutamate: a neurotransmitter in mammalian brain // J. Neurochem. – 1984. – 42. – Р.1–11.
- Gegelashvili G., Schousboe A. High affinity glutamate transporters: regulation of expression and activity // Mol. Pharmacol. – 1997. – 52. – Р.6–15.
- Gegelashvili G., Dehnes Y., Danbolt N. et al. The high- affinity glutamate transporters GLT1, GLAST and EAAT4 are regulated via different signalling mecha- nisms // Neurochem. Int. – 2000. – 37. – Р.163–170.
- Gemba T., Oshima T., Ninomiya M. Glutamate efflux via the reversal of the sodium-dependent glutamate trans- porter caused by glycolytic inhibition in rat cultured as- trocytes // Neuroscience. – 1994. – 63. – Р.789–795.
- Guinan M., Horowitz J., Fuller C. Effects of hyper- dynamic fields on input-output relationships and long- term potentiation in the rat hippocampus // J. Gravitat. Physiol. – 1998. – 5. – Р.31–40.
- Headley P.M., Grillner S. Excitatory amino acids and syn- aptic transmission: the evidence for a physiological func- tion // Trends Pharmacol. Sci. – 1990. – 11. – Р.205–211.
- Ikemoto A., Bole D., Ueda T. Glycolysis and glutamate accumulation into synaptic vesicles // JBC. – 2003. – 278. – Р.5929–5940.
- 19. Jabaudon D., Shimamoto K., Yasuda-Kamatani Y. et al. Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin // PNAS USA. – 1999. – 96. – Р.8733–8738.
- 20. Jensen J. B., Pickering D. S., Schousboe A. Depolariza- tion-induced release of [3H]D-aspartate from GABAergic neurons caused by reversal of glutamate transporters // Int. J. Dev. Neurosci. – 2000. –18. – Р.309–315.
- Kauppinen R.A., McMahon H.T., Nicholls D.G. Ca2+- dependent and Ca2+ -independent glutamate release, energy status and cytosolic free Ca2+ concentration in isolated nerve terminals following metabolic inhibition: possible relevance to hypoglycaemia and anoxia // Neu- roscience. – 1988. – 27. – Р.175–182.
- Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determi- nation // Analit. Biochem. – 1986. –155. – Р.243–248.
- Levi G., Raiteri M. Carrier-mediated release of neuro- transmitters // Trends Neurosci. – 1993. – 16. – Р.415–419.
- Liu H., Cai Q., Ji G. et al. Changes of mRNA expres- sion of IL-I beta and TNF-alpha in rat brain after repeated exposure to +Gz // Space Med. Eng. (Beijing). – 2000. – 13. – Р.371–373.
- Longuemare M.C., Swanson R.A.. Excitatory amino acid release from astrocytes during energy failure by of sodium-dependent uptake // J. Neurosci. Res. – 1995. – 40. – Р.379–386.
- Manzey D., Lorenz B. Mental performance during short-term and long-term spaceflight // Brain Res. Rev. – 1998. – 28. – Р.215–221.
- Matsuda T., Gotoh T., Tanaka K. et al. Vestibulo- sympathetic reflex mediates the pressor response to hypergravity in conscious rats: contribution of the diencephalons // Brain Res. – 2004. – 1028. – Р.140–147.
- Rahmann H., Slenzka K., Kortje K. et al. Synaptic plasticity and gravity: ultrastructural, biomedical and physico-chemical fundaments // Adv. Space. Res. – 1992. – 12. – Р.63–72.
- 29. Raymond J., Dememes D., Blanc E. et al. Develop- ment of the vestibular system in microgravity. – In: The Neurolab Spacelab Mission: Neuroscience Research in Space. – 2003. – Р.143–149.
- 30. Rijken P., Boonstra J., Verkleij A. et al. Effects of grav- ity on the cellular response to epidermal growth factor // Adv. Space Biol.Med. – 1994. – 4. – Р.159–188.
- Roettger V., Lipton P. Mechanism of glutamate release from lateral sclerosis // N. Engl. J. Med. – 1996. – 326. – Р.1464–1468.
- Rossi D.J., Oshima T., Attwell D. Glutamate release in D.G., Presynaptic receptors and the control of glutamate severe brain ischemia is mainly by reversed uptake // Nature. – 2000. – 403. – Р.316–321.
- Sanchez-Prieto J., Gonzalez P. Occurrence of a large Ca2+-independent release of glutamate during anoxia in isolated nerve terminals (synaptosomes) // J. Neurochem. – 1988. –50. – Р.1322–1324.
- Shahed A., Son M., Lee J. et al. Expression of c-fos, c-jun and HSP70 mRNA in rat brain following high accelera- tion stress // J. Gravitat. Physiol. – 1996. – 3. – Р.49–56.
- Shender B., Forster E., Hrebien L. et al. Acceleration- induced near-loss of consciousness: the „A-loss syn- drome» // Aviation, Space and Environment. Med. – 2003. – 74. – Р.1021–1028.
- Shioi J., Ueda T. Artificial imposed electrical potential drive L-glutamate uptake into synaptic vesicles of bovine cere- bral cortex // Biochem. J. – 1990. – 267. – Р.63–68.
- Signore A., Mandillo S., Rizzo A. et al. Hippocampal gene expression is modulated by hypergravity // Eur. J. Neurosci. – 2004. – 19. – Р.667–677.
- Szatkowski M., Barbour B., Attwell D. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake // Nature. – 1990. – 348. – Р.443–446.
- 39. Tretter L., Chinopoulos C., Adam-Vizi V. Plasma membrane depolarization and disturbed Na+ homeo- stasis induced by the protonophore carbonyl cyanide- p-trifluoromethoxyphenyl-hydrazon in isolated nerve terminals // Molec. Pharmacol. – 1998. – 53. – Р.734–74.
- 40. Whinnery J. Observations on the neurophysiologic theory of acceleration induced loss of consciousness // Aviation, Space and Environment. Med. – 1989. – 69. – Р.869–874.
- Wilson G., Reis A., Tripp L. EEG correlates of G-indu- ced loss of consciousness. Aviation // Ibid. – 2005. – 76. – Р.19–27.
|