Proteasome activity changes inaorta, heart tissues and blood leucocytes in modelling of cholesterol atherosclerosis
Pashevin D.A., Dosenko V.E., Byts Yu. V., Moibenko A.A.
Abstract
In experiments on modelling of cholesterol atherosclerosis in
rabbits (1% cholesterol-rich diet during 2 month) it was deter-
mined changes of trypsin-like (ТL), chymotrypsin-like
(CHTL) and peptydilglutamilpeptidase (PGPG) proteasomal
activity in tissues of aorta, heart and isolated blood leukocytes.
It was shown that cholesterol-rich diet caused significant in-
crease of ТL (3.2 fold, Р=0.003), PGPG (1.8 fold, Р=0.003)
proteasomal activity in aorta tissues, and PGPG activity (1.8-
times, Р=0.003) in myocardium. In isolated blood monocytes,
the CHTL and PGPG activities were significantly increased
(1.9 fold, Р=0.05 and 11.6 fold, Р=0.0001, respectively) and
in PMN leucocytes the PGPG activity of proteasome was
also significantly increased (1.8 fold, Р=0.031). Proteasomal
activity in lymphocytes during cholesterol atherosclerosis
modelling had no significant changes. The data obtained indi-
cate that alimentary hypercholesterolemia induces considerable
changes of proteasomal activity in cardio-vascular system and
blood cells that take part in atherogenesis.
References
- Биць Ю.В., Досенко В.Є., Медведєв В.В. Роль апоптозу в патогенезі атеросклерозу// Фізіол. журнал. – 2000. – 46, №5. – С.83–93.
- Гольдберг А., Еледж С., Гарпер Дж.В. Механізми клі- тинної смерті // Світ науки. – 2001, № 2. – C.32–37.
- Brand K., Eisele T., Kreusel U. et al. Dysregulation of monocytic nuclear factor – kappa B by oxidized low- density lipoprotein // Arterioscler. Thromb. Vasc. Biol. – 1997. – 17, №10. – P.1901–1909.
- Bulteau A. – L., Lundberg K.C., Humphries K.M. et al. Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion // J. Biol. Chem. – 2001 – 276, №32. – P.30057–30063.
- Bulteau A.L., Szweda L.I., Friguet B. Age-dependent declines in proteasome activity in the heart // Arch. Biochem. Biophysics. – 2002. – 397, №2. – P.298–304.
- Campbell B., Adams J., Shin Y.K. et al. Cardio- protective effects of a novel proteasome inhibitor fol- lowing ischemia and reperfusion in the isolated per- fused rat heart // J. Mol. Cell Cardiol. – 1999. – 31, №2. – P.467–476.
- Carrard G., Bulteau A.L., Petropolus Friguet B. Impai- ment of proteasome structure and function in aging // Int. J. Biochem. Cell Biol. – 2002. – 34. – P.1461–1474.
- Carrard G., Dieu M., Raes M. et al. Impact of ageing on proteasome structure and function in human lymphocytes // Int. J. Biochem. – 2003. – 35. – P.728–739.
- 9. Das S., Powell S.R., Wang P. et al. Cardioprotection with palm tocotrienol: antioxidant activity of tocotrienol is linked with its ability to stabilize proteasomes // Amer. J. Physiol. Heart Circulat. Physiol. – 2005. – 289. – H361–H367.
- 10. Drexler HC, Risau W, Konerding MA. Disregulation of proteasome function induces programmed cell death in proliferating endothelial cells // FASEB J. – 2000. – 14, №1 – P. 65–77.
- Dupre D.J., Chen Z., Le Gouill C. et al. Trafficking, ubiquitination, and down – regulation of the human platelet-activating factor receptor // J. Biol. Chem. – 2003. – 278, №48. – P.48228–48235.
- Hermann J., Gulati R., Napoli C. et al. Oxidative stress- related increase in ubiquitination in early coronary atherogenesis // FASEB J. – 2003. – 17, №12. – P.1730–1732.
- Herrmann J, Ciechanover A, Lerman LO, Lerman A. The ubiquitin-proteasome system in cardiovascular diseases – a hypothesis extended // Cardiovasc. Res. – 2004. – 61, №1. – P.11–21.
- Hipp M.S., Urbich C., Mayer P. et al. Proteasome inhibition leads to NF-kappaB-independent IL-8 ransactivation in human endothelial cells through in- duction of AP-1 // Eur. J. Immunol. – 2002. – 32, №8. – P. 2208–2217.
- Itoh M., Takaoka M., Shibata A. et al. Preventive ef- fect of lactacystin, a selective proteasome inhibitor, on ischemic acute renal failure in rats // J. Pharmacol. Exp. Ther. – 2001. – 298. – P.501–507.
- Kikuchi J., Furukawa Y., Kubo N. et al. Induction of ubiquitin-conjugating enzyme by aggregated low den- sity lipoprotein in human macrophages and its impli- cations for atherosclerosis // Arterioscler. Thromb. Vasc. Biol. – 2000. – 20, №1. – P.128–134.
- Kim HH, Kim K. Enhancement of TNF-alpha-medi- ated cell death in vascular smooth muscle cells through cytochrome c-independent pathway by the proteasome inhibitor // FEBS Lett. – 2003. – 535, №1–3. – P.190–194.
- Kostin S., Pool L., Elsasser A. et al. Myocytes die by multiple mechanisms in failing human heart // Circulat. Res. – 2003. – 92, №7. – P.715–724.
- 19. Kukan M. Emerging roles of proteasomes in ischemia- reperfusion injury of organs // J. Physiol. Pharmacol. – 2004. – 55. – P.3–15.
- 20. Li W., Yuan X.M., Olsson A.G., Brunk U.T. Uptake of oxidized LDL by macrophages results in partial lysosomal enzyme inactivation and relocation // Arte- rioscler. Thromb. Vasc. Biol. – 1998. – 18. – P.177–184.
- Lowry O.H., Rosenbrough N.J., Farr A.L. et al. Protein measurement with Folin phenol reagent // J. Biol. Chem. – 1951. – 193. – P.265–275.
- Qureshi N., Perera P.Y., Shen J. et al. The proteasome as a lipopolysaccharide-binding protein in macro- phages: differential effects of proteasome inhibition on lipopolysaccharide-induced signaling events // J. Immunol. – 2003. – 171(3). – P.1515–25.
- Robbesyn F., Garcia V., Auge N. et al. HDL counter- balance the proinflammatory effect of oxidized LDL by inhibiting intracellular reactive oxygen species rise, proteasome activation, and subsequent NF-kappaB activation in smooth muscle cells // FASEB J. – 2003. – 6. – P.743–745.
- Silaste M.L., Rantala M., Alfthan G. et al. Changes in dietary fat intake alter plasma levels of oxidized low- density lipoprotein and lipoprotein(a) // Arterioscler. Thromb. Vasc. Biol. – 2004. – 24, №3. – P.498–503.
- Stoll L.L., Denning G.M., Weintraub N.L. Potential role of endotoxin as a proinflammatory mediator of atherosclerosis // Arterioscler. Thromb. Vasc. Biol. – 2004. – 24. – P.2227–2236.
- Takabe W., Kodama T., Hamakubo T. et al. Anti- atherogenic antioxidants regulate the expression and function of proteasome alpha-type subunits in human endothelial cells // J. Biol. Chem. – 2001. – 276, №44. – P.40497–40501.
- Tsukamoto O., Minamino T., Okada K. et al. Depression of proteasome activities during the progression of cardiac dysfunction in pressure-over- loaded heart of mice // Biochem. Biophys. Res. Com. – 2006. – 340. – P.1125–1133.
- Tummala P.E., Chen X.L., Sundell C.L. et al. Angiotensin II induces vascular cell adhesion molecule- 1 expression in rat vasculature: A potential link be- tween the renin-angiotensin system and atherosclero- sis // Circulation. – 1999. – 100, №11. – P.1223–1229.
- 29. Versari D., Herrmann J., Gцssl M., et al. Dysregulation of the ubiquitin-proteasome system in human carotid atherosclerosis // Arterioscler. Thromb. Vasc. Biol. – 2006. – 26, №9. – P.2132–2139.
- 30. Vieira O., Escargueil-Blanc I., Jurgens G. Oxidized LDLs alter the activity of the ubiquitin-proteasome pathway: potential role in oxidized LDL-induced apoptosis // FASEB J. – 2000. – 3. – P.532–542.
- Wenner C., Lorkowski S., Engel T., Cullen P. Apolipo- protein E in macrophages and hepatocytes is degraded via the proteasomal pathway // Biochem. Biophys. Res. Commun. – 2001. – 282, №2. – P.608–614.
- Zhang L., Zhang Z.C., Zhang R.L. et al. Postischemic (6- Hour) treatment with recombinant human tissue plasmi- nogen activator and proteasome inhibitor PS-519 reduces infarction in a rat model of embolic focal cerebral ischemia // Stroke. – 2001. – 32. – P.2926–2931.
|