Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2006; 52(1): 30-40


Characteristics ofinositoltrisphosphate-sensitive Cа2+ stores in the acinar cells of rat submandibularsalivary gland

О.V. Коpach, І.А. Kruglikov, P.G. Kostyuk, N.V. Voitenko, N.V. Fedirko

    Ivan Franko Lviv National University, LvivО.О. Bogomolets Institute of Physiology, National Academyof Sciences of Ukraine, Kyiv



Abstract

In the acinar cells of rat submandibular salivary gland activa- tion of cholinoreceptors leads to the release of Ca2+ from endo- plasmic reticulum (ER). This Ca2+ release from ER is mainly mediated by ІnsP3-receptors. In the present work we used Arsenazo III dye and mag-fura 2/AM to measure total cellular calcium content and Ca2+ concentration in the ER ([Ca2+]ER), respectively. We have found that application of ІnsP3 to the permeabilized acinar cells evoked decrease [Ca2+]ER in dose- dependent manner with EC50 1,3 ± 0,21 mM. This ІnsP3- induced Ca2+ release from the ER was potentiated by Са2+ in the physiological ranges (100-400 nM), modulated by caffeine and ATP. Low concentrations of ATP in (<1 mM) enhanced the ІnsP3-induced decrease [Ca2+]ER while high concentrations of ATP markedly suppressed Ca2+ release. Caffeine (2 mM) decreased ІnsP3-induced Ca2+ release in the presence of Ca2+ however it has no inhibitory effect in the absence of Ca2+. This inhibitory effect of caffeine on ІnsP3-induced Ca2+ release is overcame by high concentration of InsP3 (20 mM) and ATP (1 mM) indicating that caffeine functionally competes with InsP3 Властивості інозитолтрифосфатчутливого депо Са2+ ISSN 0201-8489 Фізіол. журн., 2006, Т. 52, № 1 39 receptor domains. We suggested that the ATP regulation of InsP3-induced Ca2+ release might also play a role in oscilla- tions of intracellular Ca2+ and the maintenance of the cell sur- vival during energy attenuation periods

References

  1. Копач О.В., Кругликов І.А., Войтенко Н.В. та ін. Пермеабілізовані клітини слинних залоз як модель для вивчення кальційтранспортних систем мембрани ендоплазматичного ретикулума // Фізіол. журн. –2003. – 49, № 5. – C. 31–42.
  2. Копач О.В., Кругликов І.А., Войтенко Н.В., Федірко Н.В. Тапсигаргінчутливе та нечутливе внутрішньо- клітинне депо Са2+ в ацинарних клітинах підщелепної слинної залози щурів // Фізіол. журн. – 2005. – 51,№ 1. – С. 62–71.
  3. Копач О., Федірко Н. Кальційзалежні зміни функціо- нування ацинарних клітин слинних залоз при дії агоністів холінергічної природи // Вісн. Львів. ун-ту. Серія біологічна. – 2004. – 37. – С. 205–212.
  4. Akagi K., Nagao T., Urushidani T. Responsiveness of beta-escin-permeabilized rabbit gastric gland model: effects of functional peptide fragments // Amer. J.Physiol. – 1999. – 277, № 3. – Р. 736–744.
  5. Ambudkar I.S. Regulation of calcium in salivary gland secretion // Crit. Rev. Oral Biol. Med. – 2000. – 11, № 1. – Р. 4–25.
  6. Augustine G.J. How does calcium trigger neurotrans- mitter release? // Curr. Opin. Neurobiol. – 11, № 3. –Р. 320–326.
  7. Berridge M.J. The endoplasmic reticulum: a multifunc-tional signaling organelle // Cell Calcium. – 2002. – 32,№ 5–6. – Р. 235–249.
  8. Bezprozvanny I., Bezprozvannaya S., Ehrlich B.E.Caffeine-induced inhibition of inositol(1,4,5)-trisphosphate-gated calcium channels from cerebellum// Mol. Biol. Cell. – 1994. – 5, № 1. – Р. 97–103.
  9. 9. Bezprozvanny I., Ehrlich B.E. ATP modulates the func-tion of inositol 1,4,5-trisphosphate-gated channels at two sites // Neuron. – 1993. – 10, № 6. – Р.1175–1184.
  10. 10. Bezprozvanny I., Watras J., Ehrlich B.E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium- gated channels from endoplasmic reticulum of cerebel-um // Nature (London). – 1991. – 351, № 6329. –Р.751–754.
  11. Brown G.R., Sayers L.G., Kirk C.J. et al. The opening of the inositol 1,4,5-trisphosphate-sensitive Ca2+ channel in rat cerebellum is inhibited by caffeine //Biochem. J. – 1992. – 282, № 2. – P. 309–312.
  12. Bruce J.I., Yule D.I., Shuttleworth T.J. Ca2+-depen- dent protein kinase-a modulation of the plasmamembrane Ca2+-ATPase in parotid acinar cells // J. Biol.Chem. – 2002. – 277, № 50. – Р. 48172-48181.
  13. Carafoli E. Calcium signaling: a tale for all seasons // Proc. Natl. Acad. Sci. USA. – 2002. – 99, № 3. –P. 1115–1122.
  14. Dolmetsch R.E., Pajvani U., Fife K. et al. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway // Science. –2001. – 294, № 5541. – Р. 333–339.
  15. Ehrlich B.E., Watras J. Inositol 1,4,5-trisphosphate acti-vates a channel from smooth muscle sarcoplasmic reticulum // Nature. – 1988.– 336, № 6199. – P. 583–586.
  16. Fedirko N., Klevetz M., Kruglikov I., Voitenko N. Mechanisms supporting calcium homeostasis in rat submandibular salivary gland acinar cells // Neurophysi-ology. – 2001. – 33, № 4. – P. 252–259.
  17. Ferris C.D., Cameron A.M., Bredt D.S. et al. Autophosphorylation of inositol 1,4,5-trisphosphate receptors // J. Biol. Chem. – 1992. – 267, № 10. –Р.7036–7041.
  18. Theibert A.B., Supattapone S., Ferris C.D. et al. Solubilization and separation of inositol 1,3,4,5-tetrakis-phosphate- and inositol 1,4,5-trisphosphate-bindingproteins and metabolizing enzymes in rat brain //Biochem J. – 1990. – 267, № 2. – P. 441–445.
  19. 19. Furuichi T., Yoshikawa S., Miyawaki A. et al. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400 // Nature. – 1989.– 342. – P. 32–38.
  20. 20. Hirose K., Iino M., Endo M. Caffeine inhibits Ca(2+)-mediated potentiation of inositol 1,4,5-trisphosphate-induced Ca2+ release in permeabilized vascular smooth muscle cells // Biochem. and Biophys. Res. Commun. –1993. – 194, № 2. – P. 726–732.
  21. Hofer A.M., Machen T.E. Technique for in situ measurement of calcium in intracellular inositol 1,4,5-trisphosphate-sensitive stores using the fluorescentindicator mag-fura-2 // Proc. Natl. Acad. Sci. USA. –1993. – 90, № 7. – Р. 2598–2602.
  22. Iino M. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in smooth muscle cells of the guinea pig taenia caeci // J. Gen. Physiol. –1990. – 95. – P. 1103–1122.
  23. Iino M. Effects of adenine nucleotides on inositol 1,4,5- trisphosphate-induced calcium release in vascular smooth muscle cells // J. Gen. Physiol. – 1991. – 98, №4. – P. 681–698.
  24. Iino M., Endo M.. Calcium-dependent immediate feedback control of inositol 1,4,5-trisphosphate-induced Ca2+ release // Nature. – 1992. – 360. – P. 76–78.
  25. Lee M., Xu X., Zeng W. et al. Polarized expression of Ca2+ channels in pancreatic and salivary gland cells.Correlation with initiation and propagation of [Ca2+] i wave // J. Biol.Chem. – 1997. – 272, № 25. – Р. 15765–15770.
  26. Lomax R.B., Camello C., Van Coppenolle F. et al. Basal О.В. Копач, І.А.Кругликов, П.Г.Костюк, Н.В. Войтенко, Н.В. Федірко
  27. 04ISSN 0201-8489 Фізіол. журн., 2006, Т. 52, № 1 and physiological Ca(2+) leak from the endoplasmic reticulum of pancreatic acinar cells. Second messenger-activated channels and translocons // Ibid. – 2002. –277, № 29. – Р. 26479–26485.
  28. Maeda N., Kawasaki T., Nakade S. et al. Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebel-lum // Ibid. – 1991. – 266, № 2. – P. 1109–1116.
  29. Maes K., Missiaen L., De Smet P. Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP // Cell Calcium. – 2000. – 27, № 5. –Р. 257–267.
  30. 29. Melvin J.E., Yule D., Shuttleworth T. et al. Regulationof fluid and electrolyte secretion in salivary gland aci- nar cells // Annu. Rev. Physiol. – 2005. – 67. – P. 11.1–11.25.
  31. 30. Missiaen L., Parys J.B., De Smedt H. et al. Inhibition of inositol trisphosphate-induced calcium release by caffeine is prevented by ATP // Biochem J. – 1994. –300, № 1. – Р. 81–84.
  32. Nunn D.L., Taylor C.W. Liver inositol 1,4,5-tris-phosphate-binding sites are the Ca2+-mobilizing receptors // Biochem J. – 1990. – 270. – P 227–232.
  33. Parker I., Ivorra I. Caffeine inhibits inositol trisphos- phate-mediated liberation of intracellular calcium in Xe-nopus oocytes // J. Physiol. – 1991. – 433. – P. 229–240.
  34. Patel S., Joseph S.K., Thomas A.P. Molecular properties of inositol 1,4,5-trisphosphate receptors // Cell Calcium. – 1999. – 25, № 3. – Р. 247–264.
  35. Smith P.M, Reed H.E. Amplification of the thapsigar-gin-evoked increase in the cytosolic free Ca2+ concent-ration by acetylcholine in acutely isolated mouse sub-mandibular acinar cells // Biochem J. – 1996. – 317,№ 3. – P. 779–783.
  36. Straub S.V., Giovannucci D.R., Bruce J.I., Yule D.I. A role for phosphorylation of inositol 1,4,5-trisphosphate receptors in defining calcium signals induced by Peptideagonists in pancreatic acinar cells // J. Biol. Chem. – 2002. –277, № 35. – P. 31949–31956.
  37. Tanimura A., Turner R.J. Inositol 1,4,5-trisphosphate-dependent oscillations of luminal [Ca2+] in permeabilized HSY cells // Ibid. – 1996. – 271, № 48. – P. 30904–30908.
  38. Vats J.A., Fedirko N.V., Klevets M.Y. et al. Role of SHGroups in the Functioning of Ca2+-Transporting AT-Pases Regulating Ca2+ Homeostasis and Exocytosis //Neurophysiology. – 2002. – 34, № 1. – P. 5–12.
  39. Zimmermann B., Walz B. The mechanism mediating regenerative intercellular Ca2+ waves in the blowfly salivary gland // EMBO J. – 1999. – 18, № 12. –P. 3222–3231.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.