Study and treatment of brain ischemic-reperfusion injury
S.V. Konovalov1, V.M. Moroz1, M.V. Yoltukhivskyy1, I.V. Gusakova1
- Vinnytsia National Pirogov Memorial Medical University
DOI: https://doi.org/10.15407/fz71.04.104

Abstract
Ischemic stroke, caused by impaired blood flow to the brain, remains one of the medical conditions associated
with high mortality and long-term disability. Ischemia followed by recanalization of the occluded vessel
(via thrombolysis or thrombectomy) triggers a cascade of biochemical events in the affected brain regions,
resulting in ischemia-reperfusion injury and neuronal death. Conventional treatment of ischemic stroke,
involving the use of antithrombotic and neuroprotective agents, is not always sufficiently effective or safe.
Regenerative medicine, particularly stem cell transplantation, has emerged as a promising therapeutic
approach for cerebral ischemia-reperfusion injury. Numerous experimental studies, along with some
clinical trials, have investigated various types of stem cells. Stem cell–based therapy holds the potential to
develop more effective and comprehensive strategies targeting neuroregeneration in the ischemia-damaged
brain. This review aims to provide an updated perspective on acute cerebral ischemia-reperfusion, with
particular emphasis on the underlying pathogenesis and morphological changes in both the ischemic core
and penumbra, as well as the therapeutic prospects of stem cell–based interventions for cerebroprotection
in acute ischemic stroke.
Keywords:
brain ischemia-reperfusion; pathogenesis; morphological changes; mesenchymal stromal cells
References
- Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: Present status and future perspectives. Int J Mol Sci. 2020 Oct 15;21(20):7609. doi: 10.3390/ ijms21207609.
- Du Z, Xing L, Lin M, Sun Y. Estimate of prevalent ischemic stroke from triglyceride glucose-body mass index in the general population. BMC Cardiovascul Disord. 2020 Nov 12;20(1):483. doi: 10.1186/s12872- 020-01768-8.
- Jadhav AP, Desai SM, Liebeskind DS, Wechsler LR. Neuroimaging of acute stroke. Neurol Clin. 2020 Feb;38(1):185-99. doi: 10.1016/j.ncl.2019.09.004.
- Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guide line for Healthcare Professionals From the American Heart Association/ American Stroke Association. Stro ke. 2019 Dec;50(12):e344- e418. doi: 10.1161/STR.0000000000000211.
- Darwish EAF, Abdelhameed-El-Nouby M, Geneidy E. Mapping the ischemic penumbra and predicting stroke progression in acute ischemic stroke: the overlooked role of susceptibility weighted imaging. Insights Imag. 2020 Jan 13;11(1):6. doi: 10.1186/s13244-019-0810-y. .
- Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuro-protection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016 Jul;15(8):869-81. doi: 10.1016/S1474- 4422(16)00114-9.
- Li M, Liao L, Tian W. Extracellular vesicles derived from apoptotic cells: An Essential link between death and regeneration. Front Cell Dev Biol. 2020 Oct 2;8:573511. doi: 10.3389/fcell.2020.573511.
- Balch MHH, Nimjee SM, Rink C, Hannawi Y . Beyond the brain: The systemic pathophysiological response to acute ischemic stroke. J Stroke. 2020 May;22(2):159-72. doi: 10.5853/jos.2019.02978. Epub 2020 May 31.
- Griñán K, Arboix A, Massons J, Díez L, Vergés E, Gil F, Arboix-Alió J, Sánchez-López MJ, García-Eroles L. Cardioembolic stroke: Risk factors, clinical features, and early outcome in 956 consecutive patients. Rev Invest Clin. 2020 May 7;73(1):23-30. doi: 10.24875/ RIC.20000227.
- Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal cell death. Physiol Rev. 2018 Apr 1;98(2):813-80. doi: 10.1152/physrev.00011.2017.
- Jurcau A, Ardelean IA. Molecular pathophysiological mechanisms of ischemia/reperfusion injuries after recanalization therapy for acute ischemic stroke. J Integr Neurosci. 2021 Sep 30;20(3):727-44. doi: 10.31083/j. jin2003078.
- Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. DEFUSE 3 Investigators. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018 Feb 22;378(8): 708-18. doi: 10.1056/NEJMoa1713973.
- He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med. 2020 Jan;146:45-58. doi: 10.1016/j. freeradbiomed.2019.11.005.
- Liu L, Kearns KN, Eli I, Sharifi KA, Soldozy S, Carlson EW, Scott KW, Sluzewski MF, Acton ST, Stauderman KA, Kalani MYS, Park M, Tvrdik P. Microglial calcium waves during the hyperacute phase of ischemic stroke. Stroke. 2021 Jan;52(1):274-83. doi: 10.1161/ STROKEAHA.120.032766.
- Chavda V , Lu B. Reverse electron transport at mitochon-drial complex i in ischemic stroke, aging, and age-related diseases. Antioxidants (Basel). 2023 Apr 6;12(4):895. doi: 10.3390/antiox12040895.
- Webster JD, Kwon YC, Park S, Zhang H, Corr N, Ljumanovic N, Adedeji AO, Varfolomeev E, Goncharov T, Preston J, Santagostino SF, Patel S, Xu M, Maher J, McKenzie BS, Vucic D. RIP1 kinase activity is critical for skin inflammation but not for viral propagation. J Leukoc Biol. 2020 Jun;107(6):941-52. doi: 10.1002/ JLB.3MA1219-398R.
- Annoni F , Peluso L, Gouvêa Bogossian E, Creteur J, Zanier ER, Taccone FS. Brain protection after anoxic brain injury: is lactate supplementation helpful? Cells. 2021 Jul 6;10(7):1714. doi: 10.3390/cells10071714.
- Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci. 2020 Mar 19;14:51. doi: 10.3389/fncel.2020.00051.
- Sarvari S, Moakedi F, Hone E, Simpkins JW, Ren X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis. 2020 Aug;35(6):851-68. doi: 10.1007/s11011-020-00573-8.
- Shvedskyi VV. Experimental violation of cerebral blood circulation against the background of alloxan diabetes mellitus: characteristics of the model. Med Visn. 2012;16(61):150-6 doi: CrossRef
- Radak D, Katsiki N, Resanovic I, Jovanovic A, Sudar-Milovanovic E, Zafirovic S, Mousad SA, Isenovic ER. Apoptosis and acute brain ischemia in ischemic stroke. Curr Vasc Pharmacol. 2017;15(2):115-22. doi: 10.2174/1570161115666161104095522.
- Shafie M, Yu W. Recanalization therapy for acute ischemic stroke with large vessel occlusion: Where we are and what comes next? Transl Stroke Res. 2021 Jun;12(3):369-81. doi: 10.1007/s12975-020-00879-w.
- Orellana-Urzúa S, Rojas I, Líbano L, Rodrigo R. Pathophysiology of ischemic stroke: Role of oxidative stress. Current Pharm Des. 2020;26(34):4246-60. doi: 10.2174/1381612826666200708133912.
- Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014 May S.V . Konovalov, V .M. Moroz, M.V . Yoltukhivskyy, I.V . Gusakova 114 22;7(4):971-81. doi: 10.1016/j.celrep.2014.04.026.
- Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015 Dec;6:524-51. doi: 10.1016/j.redox.2015.08.020.
- Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Sign. 2014 Jul 20;21(3):396-413. doi: 10.1089/ars.2014.5851.
- Jurcau A, Simion A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: From pathophysiology to therapeutic strategies. Int J Mol Sci. 2021 Dec 21;23(1):14. doi: 10.3390/ijms23010014.
- Mo ZT, Liao YL, Zheng J, Li WN. Icariin protects neurons from endoplasmic reticulum stress-induced apoptosis after OGD/R injury via suppressing IRE1α-XBP1 signaling pathway. Life Sci. 2020 Aug 15;255:117847. doi: 10.1016/j.lfs.2020.117847
- Remus EW, Sayeed I, Won S, Lyle AN, Stein DG. Progesterone protects endothelial cells after cerebrovascular occlusion by decreasing MCP-1- and CXCL1- mediated macrophage infiltration. Exp Neurol. 2015 Sep;271:401-8. doi: 10.1016/j.expneurol.2015.07.010.
- Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neu-roinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke. 2022 May;53(5):1473- 86. doi: 10.1161/STROKEAHA.122.036946.
- Choi DW. Excitotoxicity: Still hammering the ischemic brain in 2020. Front Neurosci. 2020 Oct 26;14:579953. doi: 10.3389/fnins.2020.579953.
- Zhang L, Wang LM, Chen WW, Ma Z, Han X, Liu CM, Cheng X, Shi W, Guo JJ, Qin JB, Yang XQ, Jin GH, Zhang XH. Neural differentiation of human Wharton's jelly-derived mesenchymal stem cells improves the recovery of neurological function after transplantation in ischemic stroke rats. Neural Regen Res. 2017 Jul;12(7):1103-10. doi: 10.4103/1673-5374.211189.
- Borlongan CV. Concise review: Stem cell therapy for stroke patients: are we there yet? Stem Cell Transl Med. 2019 Sep;8(9):983-8. doi: 10.1002/sctm.19-0076.
- Kawabori M, Shichinohe H, Kuroda S, Houkin K. Clinical trials of stem cell therapy for cerebral ischemic stroke. Int J Mol Sci. 2020 Oct 6;21(19):7380. doi: 10.3390/ ijms21197380.
- Svendsen CN, ter Borg MG, Armstrong RJ, Rosser AE, Chandran S, Ostenfeld T, Caldwell MA. A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Method. 1998 Dec 1;85(2):141- 52. doi: 10.1016/s0165-0270(98)00126-5.
- Golas MM. Human cellular models of medium spiny neu-ron development and Huntington disease. Life Sci. 2018 Sep 15;209:179-196. doi: 10.1016/j.lfs.2018.07.030.
- Jiao Y, Liu YW, Chen WG, Liu J. Neuroregeneration and functional recovery after stroke: advancing neural stem cell therapy toward clinical application. Neural Regen Res. 2021 Jan;16(1):80-92. doi: 10.4103/1673- 5374.286955.
- Addington CP, Dharmawaj S, Heffernan JM, Sirianni RW, Stabenfeldt SE. Hyaluronic acid-laminin hydrogels increase neural stem cell transplant retention and migratory response to SDF-1α. Matrix Biol. 2017 Jul;60-1:206-216. doi: 10.1016/j.matbio.2016.09.007.
- Gójska-Grymajło A, Zieliński M, Wardowska A, Gąsecki D, Pikuła M, Karaszewski B. CXCR7+ and CXCR4+ stem cells and neuron specific enolase in acute ischemic stroke patients. Neurochem Int. 2018 Nov;120:134-9. doi: 10.1016/j.neuint.2018.08.009.
- Ryu S, Lee SH, Kim SU, Yoon BW. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain. Neural Regen Res. 2016 Feb;11(2):298-304. doi: 10.4103/1673-5374.177739.
- Rahman AA, Amruta N, Pinteaux E, Bix GJ. Neurogenesis after stroke: A therapeutic perspective. Transl Stroke Res. 2021 Feb;12(1):1-14. doi: 10.1007/s12975-020-00841-w.
- Huang L, Wong S, Snyder EY , Hamblin MH, Lee JP. Hu-man neural stem cells rapidly ameliorate symptomatic inflammation in early-stage ischemic-reperfusion cerebral injury. Stem Cell Res Ther. 2014 Nov 23;5(6):129. doi: 10.1186/scrt519.
- Eckert A, Huang L, Gonzalez R, Kim HS, Hamblin MH, Lee JP. Bystander effect fuels human induced pluripotent stem cell-derived neural stem cells to quickly attenuate early stage neurological deficits after stroke. Stem Cell Transl Med. 2015 Jul;4(7):841-51. doi: 10.5966/ sctm.2014-0184.
- Anderson L, Burnstein RM, He X, Luce R, Furlong R, Foltynie T, Sykacek P, Menon DK, Caldwell MA. Gene expression changes in long term expanded human neural progenitor cells passaged by chopping lead to loss of neurogenic potential in vivo. Exp Neurol. 2007 Apr;204(2):512-24. doi: 10.1016/j.expneurol.2006.12.025.
- Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25;126(4):663-76. doi: 10.1016/j.cell.2006.07.024.
- Jurcău MC, Andronie-Cioara FL, Jurcău A, Marcu F, Ţi DM, Pacalău N, Nistor-Cseppentö DC. The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of Alzheimer's disease: Therapeutic implications and future perspectives. Antioxidants (Basel). 2022 Oct 31;11(11):2167. doi: 10.3390/antiox11112167.
- Derakhshankhah H, Sajadimajd S, Jafari S, Izadi Z, Sarvari S, Sharifi M, Falahati M, Moakedi F, Muganda WCA, Müller M, Raoufi M, Presley JF. Novel therapeutic strategies for Alzheimer's disease: Implications from cell-based therapy and nanotherapy. Nanomedicine. 2020 Feb;24:102149. doi: 10.1016/j.nano.2020.102149.
- Karow M, Camp JG, Falk S, Gerber T, Pataskar A, Gac-Santel M, et al. Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nat Neurosci. 2018 Jul;21(7):932-40. doi: 10.1038/s41593- 018-0168-3. Study and treatment of brain ischemic-reperfusion injury 115
- An N, Xu H, Gao WQ, Yang H. Direct conversion of so-matic cells into induced neurons. Mol Neurobiol. 2018 Jan;55(1):642-51. doi: 10.1007/s12035-016-0350-0.
- Chung JW, Chang WH, Bang OY, Moon GJ, Kim SJ, Kim SK, Lee JS, Sohn SI, Kim YH. STARTING-2 Collaborators. Efficacy and safety of intravenous mesenchymal stem cells for ischemic stroke. Neurology. 2021 Feb 16;96(7):e1012-e23. doi: 10.1212/ WNL.0000000000011440.
- Viswanathan S, Shi Y , Galipeau J, Krampera M, Leblanc K, Martin I, Nolta J, Phinney DG, Sensebe L. Mesenchymal stem versus stromal cells: International society for cell & gene therapy (ISCT®) mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy. 2019 Oct;21(10):1019-24. doi: 10.1016/j. jcyt.2019.08.002.
- Patel AA, Mohamed AH, Rizaev J, Mallick AK, Qasim MT, Abdulmonem WA, Jamal A, Hattiwale HM, Kamal MA, Ahmad F. Application of mesenchymal stem cells derived from the umbilical cord or Wharton's jelly and their extracellular vesicles in the treatment of various diseases. Tissue Cell. 2024 Aug;89:102415. doi: 10.1016/j.tice.2024.102415.
- Li Z, Ye H, Cai X, Sun W, He B, Yang Z, Xu P. Bone marrow-mesenchymal stem cells modulate microglial activation in the peri-infarct area in rats during the acute phase of stroke. Brain Res Bull. 2019 Nov;153:324-33. doi: 10.1016/j.brainresbull.2019.10.001.
- Yoshida Y, Takagi T, Kuramoto Y, Tatebayashi K, Shirakawa M, Yamahara K, Doe N, Yoshimura S. Intravenous administration of human amniotic mesenchymal stem cells in the subacute phase of cerebral infarction in a mouse model ameliorates neurological disturbance by suppressing blood brain barrier disruption and apoptosis via immunomodulation. Cell Transplant. 2021 Jan-Dec;30:9636897211024183. doi: 10.1177/09636897211024183.
- Guo Y , Peng Y , Zeng H, Chen G. Progress in mesenchymal stem cell therapy for ischemic stroke. Stem Cells Int. 2021 Jun 15;2021:9923566. doi: 10.1155/2021/9923566.
- Brooks B, Ebedes D, Usmani A, Gonzales-Portillo JV , Gonzales-Portillo D, Borlongan CV. Mesenchymal stromal cells in ischemic brain injury. Cells. 2022 Mar 17;11(6):1013. doi: 10.3390/cells11061013.
- Kong T, Park JM, Jang JH, Kim CY, Bae SH, Choi Y, Jeong YH, Kim C, Chang SW, Kim J, Moon J. Immunomodulatory effect of CD200-positive human placenta-derived stem cells in the early phase of stroke. Exp Mol Med. 2018 Jan 12;50(1):e425. doi: 10.1038/ emm.2017.233.
- Evans MA, Lim R, Kim HA, Chu HX, Gardiner-Mann CV, Taylor KWE, et al. Acute or delayed systemic administration of human amnion epithelial cells improves outcomes in experimental stroke. Stroke. 2018 Mar;49(3):700-9. doi: 10.1161/STROKEAHA.117.019136.
- Chelluboina B, Nalamolu KR, Mendez GG, Klopfenstein JD, Pinson DM, Wang DZ, Veeravalli KK. Mesenchymal stem cell treatment prevents post-stroke dysregulation of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Cell Physiol Biochem. 2017; 44(4):1360-9. doi: 10.1159/000485533.
- Uchida H, Morita T, Niizuma K, Kushida Y , Kuroda Y , W akao S, Sakata H, Matsuzaka Y , Mushiake H, Tominaga T, Borlongan CV , Dezawa M. Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells. 2016 Jan;34(1):160-73. doi: 10.1002/stem.2206.
- Stroncek DF, Jin P, McKenna DH, Takanashi M, Fontaine MJ, Pati S, Schäfer R, Peterson E, Benedetti E, Reems JA. Human mesenchymal stromal cell (MSC) characteristics vary among Laboratories when manufactured from the same source material: A report by the cellular therapy team of the biomedical excellence for safer transfusion (BEST) collaborative. Front Cell Dev Biol. 2020 Jun 16;8:458. doi: 10.3389/fcell.2020.00458.
- Johnson TC, Siegel D. Directing stem cell fate: The synthetic natural product connection. Chem Rev. 2017 Sep 27;117(18):12052-86. doi: 10.1021/acs. chemrev.7b00015.
- Xu S, Qiu Y, Tao J. The challenges and optimization of cell-based therapy for cardiovascular disease. J Transl Int Med. 2021 Dec 31;9(4):234-8. doi: 10.2478/jtim- 2021-0017.
- Garbuzova-Davis S, Haller E, Lin R, Borlongan CV. Intravenously transplanted human bone marrow endothelial progenitor cells engraft within brain capillaries, preserve mitochondrial morphology, and display pinocytotic activity toward blood-brain barrier repair in ischemic stroke rats. Stem Cells. 2017 May;35(5):1246-1258. doi: 10.1002/stem.2578.
- Li Y , Chang S, Li W, Tang G, Ma Y , Liu Y , Y uan F, Zhang Z, Yang GY, Wang Y. cxcl12-Engineered endothelial progenitor cells enhance neurogenesis and angiogenesis after ischemic brain injury in mice. Stem Cell Res Ther. 2018 May 11;9(1):139. doi: 10.1186/s13287-018-0865-6.
- Burrow KL, Hoyland JA, Richardson SM. Human adipose-derived stem cells exhibit enhanced proliferative capacity and retain multipotency longer than donormatched bone marrow mesenchymal stem cells during expansion in vitro. Stem Cells Int. 2017;2017:2541275. doi: 10.1155/2017/2541275.
- Semenova E, Grudniak MP, Machaj EK, Bocian K, Chroscinska-Krawczyk M, Trochonowicz M, Stepaniec IM, Murzyn M, Zagorska KE, Boruczkowski D, Kolanowski TJ, Oldak T, Rozwadowska N. Mesenchymal stromal cells from different parts of umbilical cord: approach to comparison & characteristics. Stem Cell Rev Rep. 2021 Oct;17(5):1780-95. doi: 10.1007/s12015- 021-10157-3.
- Liau LL, Ruszymah BHI, Ng MH, Law JX. Characteristics and clinical applications of Wharton's jelly-derived mesenchymal stromal cells. Curr Res Transl Med. 2020 S.V . Konovalov, V .M. Moroz, M.V . Yoltukhivskyy, I.V . Gusakova 116 Jan;68(1):5-16. doi: 10.1016/j.retram.2019.09.001.
- Cherkashova EA, Namestnikova DD, Gubskiy IL, Revkova V A, Sukhinich KK, Mel'nikov PA, Chekhonin VP, Gubsky LV , Yarygin KN. Dose-dependent effects of intravenous mesenchymal stem cell transplantation in rats with acute focal cerebral ischemia. Bull Exp Biol Med. 2022 Aug;173(4):514-8. doi: 10.1007/s10517- 022-05573-5.
- Grudzenski S, Baier S, Ebert A, Pullens P, Lemke A, Bieback K, Dijkhuizen RM, Schad LR, Alonso A, Hennerici MG, Fatar M. The effect of adipose tissuederived stem cells in a middle cerebral artery occlusion stroke model depends on their engraftment rate. Stem Cell Res Ther. 2017 Apr 26;8(1):96. doi: 10.1186/s13287- 017-0545-y.
- Cui LL, Kerkelä E, Bakreen A, Nitzsche F, Andrzejewska A, Nowakowski A, Janowski M, Walczak P, Boltze J, Lukomska B, Jolkkonen J. The cerebral embolism evoked by intra-arterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity. Stem Cell Res Ther. 2015 Jan 27;6(1):11. doi: 10.1186/scrt544.
- Rascón-Ramírez FJ, Esteban-García N, Barcia JA, Trondin A, Nombela C, Sánchez-Sánchez-Rojas L. Are we ready for cell therapy to treat stroke? Front Cell Dev Biol. 2021 Jun 23;9:621645. doi: 10.3389/fcell.2021.621645.
- Mu J, Bakreen A, Juntunen M, Korhonen P , Oinonen E, Cui L, Myllyniemi M, Zhao S, Miettinen S, Jolkkonen J. Combined adipose tissue-derived mesenchymal stem cell therapy and rehabilitation in experimental stroke. Front Neurol. 2019 Mar 26;10:235. doi: 10.3389/fneur.2019.00235.
- Tsupykov OM, Lushnikova IV , Ustymenko AM, Kyryk VM, Nikandrova YA, Patseva MA, Yatsenko KV, Butenko GM, Skibo GG. Protective effects of adiposederived multipotent mesenchymal stromal cells of mice on periventricular leukomalacia model in vitro. Cell Organ Transplantol. 2017; 5(1):28-32. doi:10.22494/ cot.v5i1.66
- Huang H, Qian K, Han X, Li X, Zheng Y , Chen Z, Huang X, Chen H. Intraparenchymal neural stem/progenitor cell transplantation for ischemic stroke animals: A metaanalysis and systematic review. Stem Cells Int. 2018 Oct 2;2018:4826407. doi: 10.1155/2018/4826407.
- Stonesifer C, Corey S, Ghanekar S, Diamandis Z, Acosta SA, Borlongan CV. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol. 2017 Nov;158:94-131. doi: 10.1016/j.pneurobio.2017.07.004.
- Oh SH, Choi C, Noh JE, Lee N, Jeong YW, Jeon I, Shin JM, Kim JH, Kim HJ, Lee JM, Kim HS, Kim OJ, Song J. Interleukin-1 receptor antagonist-mediated neuroprotection by umbilical cord-derived mesenchymal stromal cells following transplantation into a rodent stroke model. Exp Mol Med. 2018 Apr 13;50(4):1-12. doi: 10.1038/s12276-018-0041-1.
- Lin W, Hsuan YC, Lin MT, Kuo TW, Lin CH, Su YC, Niu KC, Chang CP, Lin HJ. Human umbilical cord mesenchymal stem cells preserve adult newborn neurons and reduce neurological injury after cerebral ischemia by reducing the number of hypertrophic microglia/ macrophages. Cell Transplant. 2017 Nov;26(11):1798- 810. doi: 10.1177/0963689717728936.
- Chen L, Zhang G, Gu Y, Guo X. Meta-Analysis and Systematic Review of Neural Stem Cells therapy for experimental ischemia stroke in preclinical studies. Sci Rep. 2016;6:32291. doi: 10.1038/srep32291.
- Mochizuki N, Takagi N, Kurokawa K, Onozato C, Mori ya-ma Y , Tanonaka K, Takeo S. Injection of neural progenitor cells improved learning and memory dysfunction after cerebral ischemia. Exp Neurol. 2008 May;211(1):194- 202. doi: 10.1016/j.expneurol.2008.01.027.
- Somaa FA, Wang TY, Niclis JC, Bruggeman KF, Kauhausen JA, Guo H, McDougall S, Williams RJ, Nisbet DR, Thompson LH, Parish CL. Peptide-based scaffolds support human cortical progenitor graft integration to reduce atrophy and promote functional repair in a model of stroke. Cell Rep. 2017 Aug 22;20(8):1964-77. doi: 10.1016/j.celrep.2017.07.069.
|