EFFECT OF A BENZODIAZEPINE DERIVATIVE, METRESDIAZENONE, ON LIPID METABOLISM IN RATS WITH PARKINSONIAN SYNDROME
L.Ya. Shtanova1, S.P. Vesеlsky1, P.I. Yanchuk1, R.A. Rozhnova2, V.S. Moskvina1, O.V. Shablykina1, E.M. Reshetnik1, O.V. Kravchenko3, V.P. Khilya1
- Taras Shevchenko National University of Kyiv
- Institute of the Macromolecular Chemistry of the NAS of Ukraine, Kyiv
- O.O. Bogomolets National Medical University, Kyiv
DOI: https://doi.org/10.15407/fz71.04.029

Abstract
Progress in understanding the extent and role of gastrointesti-
nal dysfunction in Parkinson's disease (PD) has significantly
advanced over the past decade. PD is believed to be associ-
ated not only with the loss of dopaminergic neurons in the
substantia nigra of the midbrain, but also with a range of
peripheral metabolic changes, including those in the liver.
Autonomic dysfunction is recognized as a key non-motor
feature of PD. This study aimed to investigate the effect of
a novel benzodiaze pine derivative, metresdiazenone, on the
lipid composition of bile in a rotenone-induced rat model of
Parkinsonian syndrome (PS). Compared to control animals,
rotenone exposure led to a decrease in bile concentrations of
phospholipids, cholesterol, cholesterol esters, and triglycerides
by 23.6%, 24.5%, 29.3%, and 38.1%, respectively, with no
significant change in free fatty acid content. Administration of
metresdiazenone at a dose of 1 mg/kg restored bile lipid levels
nearly to baseline: phospholipids (100%), cholesterol (82.2%),
cholesterol esters (87.5%), and triglycerides (82.1%). At higher
doses (2 and 4 mg/kg), bile concentrations of phospholipids
exceeded control values by 12.5% and 25.3%, cholesterol by
12.4% and 11.7%, cholesterol esters by 11.3% and 19.5%,
triglycerides by 20.7% and 31.2%, and free fatty acids by
10.1% and 14.2%, respectively. These findings indicate that
metresdiazenone at 1 mg/kg effectively restores impaired lipid
metabolism in the liver in the rotenone model of PS, while
higher doses lead to a marked increase in triglyceride levels.
Keywords:
rotenone; parkinsonian syndrome; metresdiazenone; bile; bile lipids
References
- Deliz JR, Tanner CM, Gonzalez-Latapi P. Epidemiology of Parkinson's disease: An update. Curr Neurol Neurosci Rep. 2024;24(6):163-79.
- Chen Zh, Li G, Liu J. Autonomic dysfunction in Parkinson's disease: Implications for pathophysiology, diagnosis, and treatment. Neurobiol Dis. 2020. 134:104700.
- Yang Y , Zhang Z. α-Synuclein pathology from the body to the brain: so many seeds so close to the central soil. Neural Regen Res. 2024;19(7):1463-72.
- Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, San Luciano M, Tanner C. The epidemiology of Parkinson's disease. Lancet. 2024;403(10423):283-92.
- Morris HR, Spillantini MG, Sue CM, Williams-Gray CH. The pathogenesis of Parkinson's disease. Lancet. 2024;403(10423):293-304.
- Li HY, Liu DS, Zhang YB, Rong H, Zhang XJ. The interaction between alpha-synuclein and mitochondrial dysfunction in Parkinson's disease. Biophys Chem. 2023;303:107122.
- Mori А, Imai Y, Hattori N. Lipids: Key players that modulate α-synuclein toxicity and neurodegeneration in Parkinson's disease. Int J Mol Sci. 2020;7;21(9):3301.
- Chia SJ,Tan E-K, Chao Y -X. Historical perspective: Models of Parkinson's disease. Int J Mol Sci. 2020;21(7):2464.
- Vijiaratnam N,Simuni T, Bandmann O, Morris HR, Foltynie T. Progress towards therapies for disease modification in Parkinson's disease. Lancet Neurol. 2021;20(7):559-72. Вплив похідного бензодіазепіну – метрездіазенону на ліпідний метаболізм у щурів з паркінсонічним синдромом 37
- Caputi V, Giron MC. Microbiome-gut-brain axis and toll-like receptors in parkinson's disease. Int J Mol Sci. 2018; 19:1689.
- Fonseca-Fonseca L,Wong-Guerra M, Ramírez-Sánchez J, Montano-Peguero Y , PadrónYaquis A, Rodríguez A, da Silva V , Costa S, Pardo-Andreu Y . JM-20, a novel hybrid molecule, protects against rotenone-induced neurotoxicity in experimental model of Parkinson's disease. Neurosci Lett. 2019;690:29-35.
- de Zárate AO, Pérez-Torralba M, Isidro IB, López C, Claramunt RM, Martínez-Casanova D, Sánchez-Vera I, González JJ, Lavandera JL. 1,5-Benzodiazepin2(3H)- ones: In vitro evaluation as antiparkinsonian agents. Antioxidants. 2021;10,1584.
- Shtanova LYa, Vesеlsky SP, Yanchuk PI, Tsymbalyuk OV , Moskvina VS, Shablykina OV , Moroz OF, V ovkun TV , Kravchenko ОV , Khilya VP. Purine and lipid metabolism in rats with a rotenone model of Parkinson's disease under the influence of methanindiazenone. Fiziol Zh. 2022;68(6):18-30.
- Shtanova LY ,Vesеlsky SP, Yanchuk PI, Tsymbalyuk OV , Moroz OF, ReshetnikEM, Moskvina VS, Shablykina OV , Kravchenko ОV , Khilya VP. Benzodiazepinе derivative methanindiazenone modulates lipid metabolism in the liver of rats with rotenone-induced Рarkinsonian syndrome. Fiziol Zh. 2023;69(6):77-87.
- Bonaz B. The gut-brain axis in Parkinson's disease. Rev Neurol (Paris). 2024;180(1-2):65-78.
- Reyes JF, Ekmark-Lewen S, Perdiki M, Klingstedt T, Hoffmann A, Wiechec E, Nilsson P. Accumulation of alpha-synuclein within the liver, potential role in the clearance of brain pathology associated with Parkinson's disease. Acta Neuropathol Commun. 2021;9(1):46.
- Wang X, Liang T, Mao Y, Li Z, Li X, Zhu X, Cao F, Zhang J. Nervonic acid improves liver inflammationin a mouse model of Parkinson's disease by inhibiting proinflammatory signaling pathways and regulating metabolic pathways. Phytomedicine. 2023;117:154911.
- Shablykina O, Krekhova O, Konovalenko А, Moskvina V , Khilya V . Interactionof 3-pyridyland 3-(imidazo[1,2-a] pyridin-2-yl) isocoumarins with hydrazine. Dop Natl Аkad Nauk Ukr. 2018;(12):71-8.
- Zeng X, Geng W, Jia J. Neurotoxin induced animal models of Parkinson disease: Pathogenic mechanism and assessment. ASN Neuro. 2018;10:1759091418777438.
- Moroz OF, V eselskiy SP , Lyashchenko TP , Nuryshchenko NE. Changes of lipid components ratio in the rat bile after applying bombesin neuropeptide. Ukr Biochem J. 2009;81:52-58.
- Costa HN, Esteves AR, Empadinhas N, Cardoso SM. Parkinson's disease: A Multisystem disorder. Neurosci Bull. 2023;39(1):113-24.
- Higinbotham AS, Kilbane CW. The gastrointestinal tract and Parkinson's disease. Front Cell Infect Microbiol. 2024;15;13:1158986.
- Farooqui AA, Horrocks LA, Farooqui T. Glyce rophos-pholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipid. 2000;106(1):1-29.
- vanMeer G, Voelker D R &Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112-24.
- Markovinovic А, Greig J, Martín-Guerrero SM, Salam S, Paillusson S. Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases. J Cell Sci. 2022;135(3):jcs248534.
- Nieto СY, Yakhine-Diop SMS, Moreno-Cruz P, García МL, Pereira GA, Morales-García JA, Niso-Santano M. Changes in liver lipidomic profile in G2019SLRRK2 mouse model of Parkinson's disease. Cells. 2023;12:806.
- Rossmeisl M, Medrikova D, van Schothorst E, Pavlisova J, Kuda O, Hensler M, Bardova K, Flachs P. Omega-3 phospholipids from fish suppress hepatic steatosis by integrated inhibition of biosynthetic pathways in dietary obese mice. Biochim Biophys Acta. 2014;1841(2):267-78.
- Hong X, Guo W, Shanshan L. Lower blood lipid level is associated with the occurrence of Parkinson's disease: A meta-analysis and systematic review. Int J Clin Pract. 2022;9:2022:9773038.
- Alrouji M, Al-Kuraishy HM, Abdu Ali Al-Mahammadawy A-K, Al-Gareeb AI, Saad HM, Batiha El-Saber G. The potential role of cholesterol in Parkinson's disease neuropathology: perpetrator or victim. Neurol Sci. 2023;44(11):3781-94.
- Gudala К, Bansal D, Muthyala Н. Role of serum cholesterol in Parkinson's disease: a meta-analysis of evidence. J Parkinson Dis. 2013;3(3):363-70.
|