Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(4): 11-21


EFFECTS OF CELLULAR PROTEIN KINASES BLOCKADE ON RETINAL APOPTOSIS IN EXPERIMENTAL DIABETIC RETINOPATHY

K.O. Usenko, S.O. Rykov, D.I. Yevstifeiev, S.V. Ziablicev

  1. Bogomolets National Medical University, Kyiv
DOI: https://doi.org/10.15407/fz71.04.011


Abstract

Experimental and clinical studies confirm that the progressive deterioration of visual acuity in diabetic retinopathy (DR) results from apoptosis of retinal neuronal structures and fibrovascular proliferation in the fundus. This study aimed to assess the extent of retinal apoptosis in experimental DR and evaluate the effects of cellular protein kinases blockade. Experimental DR was induced in male Wistar rats via streptozotocin administration (50 mg/kg; “Sigma- Aldrich”, China). Group 1 (control) received no treatment for hyperglycemia. Group 2 received insulin (“Actrapid HM Penfill”, Denmark) at 30 U every other day. Group 3 was treated with the protein kinase inhibitor sorafenib (“Cipla”, India) at 50 mg/kg. Group 4 received both insulin (as in Group 2) and sorafenib (as in Group 3). Caspase-3 and Bax protein levels in retinal lysates were analyzed by immunoblotting, and caspase-3 expression was also assessed immunohistochemically (“ThermoFisher Scientific”, USA). During DR progression, the levels of precursor and active forms of proapoptotic proteins caspase-3 and Bax increased in parallel. Sorafenib alone did not affect hyperglycemia- induced retinal apoptosis, whereas insulin, either alone or in combination with sorafenib, significantly reduced both proapoptotic markers, indicating suppression of DR-associated apoptosis. The immunohistochemical study results confirmed elevated caspase-3 expression in ganglion cells, as well as in the processes and bodies of astrocytes and Müller cells, reflecting reactive gliosis typical of DR. The reduction of apoptosis with insulin treatment, alone or combined with sorafenib, suggests that insulin may counteract sorafenib's potential proapoptotic effects, while preserving sorafenib's ability to prevent DR-related morphological changes.

Keywords: diabetic retinopathy; apoptosis; ganglion cells; Müller cells; Bax proteins; caspase-3; sorafenib.

References

  1. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis. Ophthalmology. 2021 Nov;128(11):1580- 91. doi: 10.1016/j.ophtha.2021.04.027.
  2. CrossRef PubMed
  3. Kaur A, Kumar R, Sharma A. Diabetic retinopathy leading to blindness- A review. Curr Diabet Rev. 2024;20(9):e240124225997. doi: 10.2174/01157339 98274599231109034741.
  4. CrossRef PubMed
  5. Early Treatment Diabetic Retinopathy Study Research К.О. Усенко, С.О. Риков, Д.І. Євстіфеєв, С.В. Зябліцев 20 Group. Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs - An Extension of the Modified Airlie House Classification: ETDRS Report Number 10. Ophthalmology. 2020 Apr;127(4S):S99-S119. doi: 10.1016/j.ophtha.2020.01.030.
  6. CrossRef PubMed
  7. Fragiotta S, Pinazo-Durán MD, Scuderi G. Understand-ing neurodegeneration from a clinical and therapeutic perspective in early diabetic retinopathy. Nutrients. 2022 Feb 14;14(4):792. doi: 10.3390/nu14040792.
  8. CrossRef PubMed PubMedCentral
  9. Adamiec-Mroczek J, Zając-Pytrus H, Misiuk-Hojło M. Caspase-dependent apoptosis of retinal ganglion cells during the development of diabetic retinopathy. Adv Clin Exp Med. 2015 May-Jun;24(3):531-5. doi: 10.17219/ acem/31805.
  10. CrossRef PubMed
  11. Zhang M, Zhang R, Zhao X, Ma Z, Xin J, Xu S, Guo D. The role of oxidative stress in the pathogenesis of ocular diseases: An overview. Mol Biol Rep. 2024 Mar 27;51(1):454. doi: 10.1007/s11033-024-09425-5.
  12. CrossRef PubMed
  13. ValdezGuerrero AS, Quintana-Pérez JC, Arellano-Men-doza MG, Castañeda-Ibarra FJ, Tamay-Cach F, AlemánGonzález-Duhart D. Diabetic retinopathy: Important biochemical alterations and the main treatment strategies. Can J Diabet. 2021 Aug;45(6):504-11. doi: 10.1016/j. jcjd.2020.10.009.
  14. CrossRef PubMed
  15. Roy S, Kim D, Sankaramoorthy A. Mitochondrial structural changes in the pathogenesis of diabetic retinopathy. J Clin Med. 2019 Sep 1;8(9):1363. doi: 10.3390/jcm8091363.
  16. CrossRef PubMed PubMedCentral
  17. Callan A, Jha S, Valdez L, Tsin A. Cellular and molecular mechanisms of neuronal degeneration in early-stage diabetic retinopathy. Curr Vascul Pharmacol. 2024;22(5): 301-15. doi: 10.2174/0115701611272737240426050930. PMID: 38693745.
  18. CrossRef PubMed
  19. Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2011 Feb 28;52(2):1156-63. doi: 10.1167/iovs.10-6293.
  20. CrossRef PubMed PubMedCentral
  21. Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy. Neural Regen Res. 2023 May;18(5):976-82. doi: 10.4103/1673-5374.355743.
  22. CrossRef PubMed PubMedCentral
  23. Shen J, San W, Zheng Y , Zhang S, Cao D, Chen Y , Meng G. Different types of cell death in diabetic endothelial dysfunction. Biomed Pharmacother. 2023 Dec;168:115802. doi: 10.1016/j.biopha.2023.115802.
  24. CrossRef PubMed
  25. Ziablitzev SV , Usenko KO, Dobrovinska OV , Perepelytsa YuV , Andrushchenko V A. The metabolic effect of cellular protein kinases blockade on the experimental diabetes. Fiziol Zh. 2024;3(70):16-26. doi: 10.15407/fz70.03.016.
  26. CrossRef
  27. Usenko KO, Rykov SO, Dyadyk OO, Ziablitsev SV. Effect of cellular protein kinases blockade on the s100 retina expression in experimental diabetic retinopathy. Pathologia. 2024; 21(3):226-31. doi: 10.14739/2310- 1237.2024.3.316604.
  28. CrossRef
  29. Dabbs D. Diagnostic Immunohistochemistry, 4th Edition Theranostic and genomic applications. 2014.
  30. Abdelgalil AA, Alkahtani HM, Al-Jenoobi FI. Sorafenib. Prof Drug Subst Excip Relat Methodol. 2019;44:239-66. doi: 10.1016/bs.podrm.2018.11.003.
  31. CrossRef PubMed
  32. Abu-El-Asrar AM, Dralands L, Missotten L, Al-Jadaan IA, Geboes K. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci. 2004 Aug;45(8):2760-6. doi: 10.1167/iovs.03-1392.
  33. CrossRef PubMed
  34. Wang T, Zhang Z, Song C, Sun L, Sui X, Qu Q, Liu J. Astragaloside IV protects retinal pigment epithelial cells from apoptosis by upregulating miR128 expression in diabetic rats. Int J Mol Med. 2020 Jul;46(1):340-50. doi: 10.3892/ijmm.2020.4588.
  35. CrossRef PubMed PubMedCentral
  36. Stadelmann C, Lassmann H. Detection of apoptosis in tissue sections. Cell Tissue Res. 2000 Jul;301(1):19-31. doi: 10.1007/s004410000203.
  37. CrossRef PubMed
  38. Kowluru RA, Koppolu P. Diabetes-induced acti-vation of caspase-3 in retina: effect of antioxidant therapy. Free Radic Res. 2002 Sep;36(9):993-9. doi: 10.1080/1071576021000006572.
  39. CrossRef PubMed
  40. Ziablitsev SV , V odianyk VV . Retinal apoptosis and the ef-fect of tyrosine kinase inhibition in experimental diabetes. J Ophthalmol (Ukraine). 2023;5(514):34-40. doi: 10.31288/ oftalmolzh202353440.
  41. CrossRef
  42. Reiter CE, Gardner TW . Functions of insulin and insulin re-ceptor signaling in retina: possible implications for diabetic retinopathy. Prog Retin Eye Res. 2003 Jul;22(4):545-62. doi: 10.1016/s1350-9462(03)00035-1.
  43. CrossRef.1016/S1350-9462(03)00035-1 PubMed
  44. Li Q, Chen K, Zhang T, Jiang D, Chen L, Jiang J, Zhang C, Li S. Understanding sorafenib-induced ferroptosis and resistance mechanisms: Implications for cancer therapy. Eur J Pharmacol. 2023 Sep 15;955:175913. doi: 10.1016/j. ejphar.2023.175913.
  45. CrossRef PubMed
  46. Wu CH, Lin KH, Fu BS, Hsu FT, Tsai JJ, Weng MC, Pan PJ. Sorafenib Induces apoptosis and inhibits NF-κBmediated anti-apoptotic and metastatic potential in osteosarcoma cells. Anticancer Res. 2021 Mar;41(3):1251-9. doi: 10.21873/anticanres.14882.
  47. CrossRef PubMed
  48. Denorme M, Yon L, Roux C, Gonzalez BJ, Baudin E, Anouar Y, Dubessy C. Both sunitinib and sorafenib are effective treatments for pheochromocytoma in a xenograft model. Cancer Lett. 2014 Oct 1;352(2):236-44. doi: 10.1016/j.canlet.2014.07.005.
  49. CrossRef PubMed
  50. Wang ZZ, Huang TY, Gong YF, Zhang XM, Feng-Wang, Huang XY . Effects of sorafenib on fibroblast-like synoviocyte apoptosis in rats with adjuvant arthritis. Int Immunopharmacol. 2020 Jun;83:106418. doi: 10.1016/j. intimp.2020.106418.
  51. CrossRef PubMed
  52. Kernt M, Liegl RG, Rueping J, Neubauer AS, Haritoglou C, Lackerbauer CA, Eibl KH, Ulbig MW, Kampik A. Sorafenib protects human optic nerve head astrocytes from light-induced overexpression of vascular endothelial growth factor, platelet-derived growth factor, and placenta growth factor. Growth Factor. 2010 Jun;28(3):211-20. doi: 10.3109/08977191003604505.
  53. CrossRef PubMed
  54. Santonocito M, Zappulla C, Viola S, La Rosa LR, Solfato E, Abbate I, Tarallo V , Apicella I, Platania CBM, Maugeri G, D'Agata V, Bucolo C, De Falco S, Mazzone MG, Giuliano F. Assessment of a new nanostructured microemulsion system for ocular delivery of sorafenib Вплив блокади клітинних протеїнкіназ на апоптоз сітківки при експериментальній діабетичній ретинопатії 21 to posterior segment of the eye. Int J Mol Sci. 2021 Apr 22;22(9):4404. doi: 10.3390/ijms22094404.
  55. CrossRef PubMed PubMedCentral
  56. Dave V , Sharma R, Gupta C, Sur S. Folic acid modified gold nanoparticle for targeted delivery of sorafenib tosylate towards the treatment of diabetic retinopathy. Colloid Surf B Biointerface. 2020 Oct;194:111151. doi: 10.1016/j. colsurfb.2020.111151.
  57. CrossRef PubMed
  58. Madhusudhan S, Gupta NV, Rahamathulla M, Chi dam bar am SB, Osmani RAM, Ghazwani M, Ahmed MM, Farhana SA, Sarhan MY, Tousif AH. Subconjunctival delivery of sorafenib-tosylateloaded cubosomes for facilitated diabetic retinopathy treatment: Formulation development, evaluation, pharmacokinetic and pharmacodynamic (PKPD) studies. Pharmaceutics. 2023 Oct 4;15(10):2419. doi: 10.3390/pharmaceutics15102419.
  59. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.