EFFECTS OF CELLULAR PROTEIN KINASES BLOCKADE ON RETINAL APOPTOSIS IN EXPERIMENTAL DIABETIC RETINOPATHY
K.O. Usenko, S.O. Rykov, D.I. Yevstifeiev, S.V. Ziablicev
- Bogomolets National Medical University, Kyiv
DOI: https://doi.org/10.15407/fz71.04.011

Abstract
Experimental and clinical studies confirm that the progressive
deterioration of visual acuity in diabetic retinopathy (DR)
results from apoptosis of retinal neuronal structures and
fibrovascular proliferation in the fundus. This study aimed
to assess the extent of retinal apoptosis in experimental
DR and evaluate the effects of cellular protein kinases
blockade. Experimental DR was induced in male Wistar
rats via streptozotocin administration (50 mg/kg; “Sigma-
Aldrich”, China). Group 1 (control) received no treatment
for hyperglycemia. Group 2 received insulin (“Actrapid
HM Penfill”, Denmark) at 30 U every other day. Group
3 was treated with the protein kinase inhibitor sorafenib
(“Cipla”, India) at 50 mg/kg. Group 4 received both insulin
(as in Group 2) and sorafenib (as in Group 3). Caspase-3
and Bax protein levels in retinal lysates were analyzed by
immunoblotting, and caspase-3 expression was also assessed
immunohistochemically (“ThermoFisher Scientific”, USA).
During DR progression, the levels of precursor and active
forms of proapoptotic proteins caspase-3 and Bax increased
in parallel. Sorafenib alone did not affect hyperglycemia-
induced retinal apoptosis, whereas insulin, either alone or
in combination with sorafenib, significantly reduced both
proapoptotic markers, indicating suppression of DR-associated
apoptosis. The immunohistochemical study results confirmed
elevated caspase-3 expression in ganglion cells, as well as
in the processes and bodies of astrocytes and Müller cells,
reflecting reactive gliosis typical of DR. The reduction of
apoptosis with insulin treatment, alone or combined with
sorafenib, suggests that insulin may counteract sorafenib's
potential proapoptotic effects, while preserving sorafenib's
ability to prevent DR-related morphological changes.
Keywords:
diabetic retinopathy; apoptosis; ganglion cells; Müller cells; Bax proteins; caspase-3; sorafenib.
References
- Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis. Ophthalmology. 2021 Nov;128(11):1580- 91. doi: 10.1016/j.ophtha.2021.04.027.
CrossRef
PubMed
- Kaur A, Kumar R, Sharma A. Diabetic retinopathy leading to blindness- A review. Curr Diabet Rev. 2024;20(9):e240124225997. doi: 10.2174/01157339 98274599231109034741.
CrossRef
PubMed
- Early Treatment Diabetic Retinopathy Study Research К.О. Усенко, С.О. Риков, Д.І. Євстіфеєв, С.В. Зябліцев 20 Group. Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs - An Extension of the Modified Airlie House Classification: ETDRS Report Number 10. Ophthalmology. 2020 Apr;127(4S):S99-S119. doi: 10.1016/j.ophtha.2020.01.030.
CrossRef
PubMed
- Fragiotta S, Pinazo-Durán MD, Scuderi G. Understand-ing neurodegeneration from a clinical and therapeutic perspective in early diabetic retinopathy. Nutrients. 2022 Feb 14;14(4):792. doi: 10.3390/nu14040792.
CrossRef
PubMed PubMedCentral
- Adamiec-Mroczek J, Zając-Pytrus H, Misiuk-Hojło M. Caspase-dependent apoptosis of retinal ganglion cells during the development of diabetic retinopathy. Adv Clin Exp Med. 2015 May-Jun;24(3):531-5. doi: 10.17219/ acem/31805.
CrossRef
PubMed
- Zhang M, Zhang R, Zhao X, Ma Z, Xin J, Xu S, Guo D. The role of oxidative stress in the pathogenesis of ocular diseases: An overview. Mol Biol Rep. 2024 Mar 27;51(1):454. doi: 10.1007/s11033-024-09425-5.
CrossRef
PubMed
- ValdezGuerrero AS, Quintana-Pérez JC, Arellano-Men-doza MG, Castañeda-Ibarra FJ, Tamay-Cach F, AlemánGonzález-Duhart D. Diabetic retinopathy: Important biochemical alterations and the main treatment strategies. Can J Diabet. 2021 Aug;45(6):504-11. doi: 10.1016/j. jcjd.2020.10.009.
CrossRef
PubMed
- Roy S, Kim D, Sankaramoorthy A. Mitochondrial structural changes in the pathogenesis of diabetic retinopathy. J Clin Med. 2019 Sep 1;8(9):1363. doi: 10.3390/jcm8091363.
CrossRef
PubMed PubMedCentral
- Callan A, Jha S, Valdez L, Tsin A. Cellular and molecular mechanisms of neuronal degeneration in early-stage diabetic retinopathy. Curr Vascul Pharmacol. 2024;22(5): 301-15. doi: 10.2174/0115701611272737240426050930. PMID: 38693745.
CrossRef
PubMed
- Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2011 Feb 28;52(2):1156-63. doi: 10.1167/iovs.10-6293.
CrossRef
PubMed PubMedCentral
- Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy. Neural Regen Res. 2023 May;18(5):976-82. doi: 10.4103/1673-5374.355743.
CrossRef
PubMed PubMedCentral
- Shen J, San W, Zheng Y , Zhang S, Cao D, Chen Y , Meng G. Different types of cell death in diabetic endothelial dysfunction. Biomed Pharmacother. 2023 Dec;168:115802. doi: 10.1016/j.biopha.2023.115802.
CrossRef
PubMed
- Ziablitzev SV , Usenko KO, Dobrovinska OV , Perepelytsa YuV , Andrushchenko V A. The metabolic effect of cellular protein kinases blockade on the experimental diabetes. Fiziol Zh. 2024;3(70):16-26. doi: 10.15407/fz70.03.016.
CrossRef
- Usenko KO, Rykov SO, Dyadyk OO, Ziablitsev SV. Effect of cellular protein kinases blockade on the s100 retina expression in experimental diabetic retinopathy. Pathologia. 2024; 21(3):226-31. doi: 10.14739/2310- 1237.2024.3.316604.
CrossRef
- Dabbs D. Diagnostic Immunohistochemistry, 4th Edition Theranostic and genomic applications. 2014.
- Abdelgalil AA, Alkahtani HM, Al-Jenoobi FI. Sorafenib. Prof Drug Subst Excip Relat Methodol. 2019;44:239-66. doi: 10.1016/bs.podrm.2018.11.003.
CrossRef
PubMed
- Abu-El-Asrar AM, Dralands L, Missotten L, Al-Jadaan IA, Geboes K. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci. 2004 Aug;45(8):2760-6. doi: 10.1167/iovs.03-1392.
CrossRef
PubMed
- Wang T, Zhang Z, Song C, Sun L, Sui X, Qu Q, Liu J. Astragaloside IV protects retinal pigment epithelial cells from apoptosis by upregulating miR128 expression in diabetic rats. Int J Mol Med. 2020 Jul;46(1):340-50. doi: 10.3892/ijmm.2020.4588.
CrossRef
PubMed PubMedCentral
- Stadelmann C, Lassmann H. Detection of apoptosis in tissue sections. Cell Tissue Res. 2000 Jul;301(1):19-31. doi: 10.1007/s004410000203.
CrossRef
PubMed
- Kowluru RA, Koppolu P. Diabetes-induced acti-vation of caspase-3 in retina: effect of antioxidant therapy. Free Radic Res. 2002 Sep;36(9):993-9. doi: 10.1080/1071576021000006572.
CrossRef
PubMed
- Ziablitsev SV , V odianyk VV . Retinal apoptosis and the ef-fect of tyrosine kinase inhibition in experimental diabetes. J Ophthalmol (Ukraine). 2023;5(514):34-40. doi: 10.31288/ oftalmolzh202353440.
CrossRef
- Reiter CE, Gardner TW . Functions of insulin and insulin re-ceptor signaling in retina: possible implications for diabetic retinopathy. Prog Retin Eye Res. 2003 Jul;22(4):545-62. doi: 10.1016/s1350-9462(03)00035-1.
CrossRef.1016/S1350-9462(03)00035-1
PubMed
- Li Q, Chen K, Zhang T, Jiang D, Chen L, Jiang J, Zhang C, Li S. Understanding sorafenib-induced ferroptosis and resistance mechanisms: Implications for cancer therapy. Eur J Pharmacol. 2023 Sep 15;955:175913. doi: 10.1016/j. ejphar.2023.175913.
CrossRef
PubMed
- Wu CH, Lin KH, Fu BS, Hsu FT, Tsai JJ, Weng MC, Pan PJ. Sorafenib Induces apoptosis and inhibits NF-κBmediated anti-apoptotic and metastatic potential in osteosarcoma cells. Anticancer Res. 2021 Mar;41(3):1251-9. doi: 10.21873/anticanres.14882.
CrossRef
PubMed
- Denorme M, Yon L, Roux C, Gonzalez BJ, Baudin E, Anouar Y, Dubessy C. Both sunitinib and sorafenib are effective treatments for pheochromocytoma in a xenograft model. Cancer Lett. 2014 Oct 1;352(2):236-44. doi: 10.1016/j.canlet.2014.07.005.
CrossRef
PubMed
- Wang ZZ, Huang TY, Gong YF, Zhang XM, Feng-Wang, Huang XY . Effects of sorafenib on fibroblast-like synoviocyte apoptosis in rats with adjuvant arthritis. Int Immunopharmacol. 2020 Jun;83:106418. doi: 10.1016/j. intimp.2020.106418.
CrossRef
PubMed
- Kernt M, Liegl RG, Rueping J, Neubauer AS, Haritoglou C, Lackerbauer CA, Eibl KH, Ulbig MW, Kampik A. Sorafenib protects human optic nerve head astrocytes from light-induced overexpression of vascular endothelial growth factor, platelet-derived growth factor, and placenta growth factor. Growth Factor. 2010 Jun;28(3):211-20. doi: 10.3109/08977191003604505.
CrossRef
PubMed
- Santonocito M, Zappulla C, Viola S, La Rosa LR, Solfato E, Abbate I, Tarallo V , Apicella I, Platania CBM, Maugeri G, D'Agata V, Bucolo C, De Falco S, Mazzone MG, Giuliano F. Assessment of a new nanostructured microemulsion system for ocular delivery of sorafenib Вплив блокади клітинних протеїнкіназ на апоптоз сітківки при експериментальній діабетичній ретинопатії 21 to posterior segment of the eye. Int J Mol Sci. 2021 Apr 22;22(9):4404. doi: 10.3390/ijms22094404.
CrossRef
PubMed PubMedCentral
- Dave V , Sharma R, Gupta C, Sur S. Folic acid modified gold nanoparticle for targeted delivery of sorafenib tosylate towards the treatment of diabetic retinopathy. Colloid Surf B Biointerface. 2020 Oct;194:111151. doi: 10.1016/j. colsurfb.2020.111151.
CrossRef
PubMed
- Madhusudhan S, Gupta NV, Rahamathulla M, Chi dam bar am SB, Osmani RAM, Ghazwani M, Ahmed MM, Farhana SA, Sarhan MY, Tousif AH. Subconjunctival delivery of sorafenib-tosylateloaded cubosomes for facilitated diabetic retinopathy treatment: Formulation development, evaluation, pharmacokinetic and pharmacodynamic (PKPD) studies. Pharmaceutics. 2023 Oct 4;15(10):2419. doi: 10.3390/pharmaceutics15102419.
CrossRef
PubMed PubMedCentral
|