Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(3): 89-96


Influence of NF-κB inactivation with ammonium pyrrolidinedithiocarbamate on nitric oxide production in rat heart during metabolic syndrome

O.Ye. Akimov, A.O. Mykytenko, V.O. Kostenko

  1. Poltava State Medical University, Ukraine
DOI: https://doi.org/10.15407/fz71.03.089


Abstract

Obesity has become an epidemic since almost 1/6th of the Earth' s population is suffering from obesity and obesity-induced pathological states. One of the key events in the pathogenesis of obesity and its complica- tions (metabolic syndrome, type II diabetes) is NF-κB activation. Therefore, searching for drugs affecting NF-κB activation during metabolic syndrome (MetS) is a perspective way of its treatment. The purpose of this study was to evaluate the influence of NF-κB inactivation with ammonium pyrrolidinedithiocarbamate on nitric oxide production, activity of arginases, concentration of nitric oxide metabolites, and hydrogen sulfide content in the rat heart during MetS modelling. We conducted our study on 24 mature male Wistar rats weighing 200-260 g, divided into 4 groups: control group, MetS group, ammonium pyrrolidinedithio- carbamate (PDTC) administration group, and PDTC+MetS group. MetS was induced by introducing of 20% fructose solution as the only source of water for 60 days. PDTC was administered intraperitoneally thrice a week at a dose of 76 mg/kg. In a 10% rat heart homogenate, we analyzed: total NO-synthase (NOS) activity, inducible (iNOS) and constitutive NO-synthase (cNOS) activities, nitrite and nitrate reductase activities, nitrite, peroxynitrite, nitrosothiols and hydrogen sulfide content. In PDTC+MetS group, iNOS activity decreased by 22.6% compared to MetS group; arginase activity decreased by 20.9%; activity of nitrate and nitrite reductases decreased by 24.3% and 32.3%, respectively. Nitrite concentration increased by 25.8%, while ONOO- levels decreased by 56.7% and nitrosothiol levels increased by 57.9%. H2S concentration decreased by 11.6%. The activation of transcription factor NF-κB during the development of metabolic syndrome leads to hyperproduction of nitric oxide due to excessive activity of inducible NO- synthase and nitrite reductases.

Keywords: heart; metabolic syndrome; nitric oxide; NF-κB; ammonium pyrrolidinedithiocarbamate

References

  1. Nguyen CJ, Kownacki C, Skaradzinski V, Streitmatter K, Acevedo S, Ericson SD, Hager JE, McCaffrey J. Development and evaluation of the food bank health and nutrition assessment. Publ Health Nutr. 2023 Apr;26(4):738-47. doi: 10.1017/S1368980023000204. CrossRef PubMed PubMedCentral
  2. Pini T, Raubenheimer D, Simpson SJ, Crean AJ. Obesity and male reproduction; placing the western diet in context. Front Endocrinol (Lausanne). 2021 Mar 11; 12: 622292. doi: 10.3389/fendo.2021.622292. CrossRef PubMed PubMedCentral
  3. Novelli G, Cassadonte C, Sbraccia P, Biancolella M. Genetics: A starting point for the prevention and the treatment of obesity. Nutrients. 2023 Jun 17; 15(12): 2782. doi: 10.3390/nu15122782. CrossRef PubMed PubMedCentral
  4. Schleh MW, Caslin HL, Garcia JN, Mashayekhi M, Srivastava G, Bradley AB, Hasty AH. Metaflammation in obesity and its therapeutic targeting. Sci Transl Med. 2023 Nov 22;15(723):eadf9382. doi: 10.1126/scitranslmed.adf9382. CrossRef PubMed PubMedCentral
  5. Witcoski Junior L, de Lima JD, Somensi AG, de Souza Santos LB, Paschoal GL, et al. Metabolic reprogramming of macrophages in the context of type 2 diabetes. Eur J Med Res. 2024 Oct 16;29(1):497. doi: 10.1186/ s40001-024-02069-y. CrossRef PubMed PubMedCentral
  6. Mallick R, Duttaroy AK. Modulation of endothelium func-tion by fatty acids. Mol Cell Biochem. 2022 Jan; 477(1): 15-38. doi: 10.1007/s11010-021-04260-9. CrossRef PubMed PubMedCentral
  7. Granada-Gómez M, Velásquez-Berrío M, Molina CR, Martín SS, Escudero C, Alvarez AM, Cadavid AP. Modulation of the activation of endothelial nitric oxide synthase and nitrosative stress biomarkers by aspirin triggered lipoxins: A possible mechanism of action of aspirin in the antiphospholipid syndrome. Am J Reprod Immunol. 2023 Aug;90(2):e13753. doi: 10.1111/aji.13753. CrossRef PubMed
  8. Wierzchowska-McNew RA, Engelen MPKJ, Thaden JJ, Ten Have GAM, Deutz NEP. Obesity- and sex-related metabolism of arginine and nitric oxide in adults. Am J Clin Nutr. 2022 Dec 19;116(6):1610-20. doi: 10.1093/ ajcn/nqac277. CrossRef PubMed
  9. Li J, Huang Y , Han Y , Wang J, Zhang C, Jiang J. Lupeol reduces M1 macrophage polarization to attenuate immunologic dissonance and fatty acid deposition in rats with diet-induced metabolic syndrome. Ann Transl Med. 2021 Oct;9(20):1534. doi: 10.21037/atm-21-4561. CrossRef PubMed PubMedCentral
  10. Huang X, Yao Y , Hou X, Wei L, Rao Y , Su Y , Zheng G, Ruan XZ, Li D, Chen Y . Macrophage SCAP contributes to metaflammation and lean NAFLD by activating STINGNF-κB signaling pathway. Cell Mol Gastroenterol Hepatol. 2022;14(1):1-26. doi: 10.1016/j.jcmgh.2022.03.006. CrossRef PubMed PubMedCentral
  11. Mamikutty N, Thent ZC, Sapri SR, Sahruddin NN, Mohd Yusof MR, Haji Suhaimi F. The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. Biomed Res Int. 2014; 2014: 263897. doi: 10.1155/2014/263897. CrossRef PubMed PubMedCentral
  12. Mykytenko AO, Akimov OYe, Yeroshenko GA, Nepo-rada KS. Influence of nuclear factor κB and adenosine monophosphate-activated protein kinase on the vascular bed of the liver under the conditions of modeling chronic alcoholic hepatitis. Regul Mechan Biosyst. 2024; 15(3): 410-5. Doi: 10.15421/022457. CrossRef
  13. Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Ro-drigues HG, Mani F, Fernandes AA, Cicogna AC, Novelli Filho JL. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007 Jan;41(1):111-9. doi: 10.1258/002367707779399518. CrossRef PubMed
  14. Zhang Y, Wang R, Fu X, Song H. Non-insulin-based insulin resistance indexes in predicting severity for coronary artery disease. Diabetol Metab Syndr. 2022 Dec 17;14(1):191. doi: 10.1186/s13098-022-00967-x. CrossRef PubMed PubMedCentral
  15. Akimov OYe, Mykytenko AO, Kostenko VO. Nitric oxide cycle activity in rat biceps femoris muscle under conditions of bacterial lipopolysaccharide influence, experimental metabolic syndrome and their combination. Ukr Biochem J. 2023; 95(4): 24-34. Doi: 10.15407/ ubj95.04.024. CrossRef
  16. Ge J, Guo K, Zhang C, Talukder M, Lv MW, Li JY , Li JL. Comparison of nanoparticle-selenium, seleniumenriched yeast and sodium selenite on the alleviation of O.Ye. Akimov, A.O. Mykytenko, V .O. Kostenko 96 cadmium-induced inflammation via NF-kB/IκB pathway in heart. Sci Total Environ. 2021 Jun 15;773:145442. doi: 10.1016/j.scitotenv.2021.145442. CrossRef PubMed
  17. Dong X, Jiang J, Lin Z, Wen R, Zou L, Luo T, Guan Z, Li X, Wang L, Lu L, Li H, Huang Y , Yang Z, Wang J, Ye X, Hong X, Wang L, Xian S, Chen Z. Nuanxinkang protects against ischemia/reperfusion-induced heart failure through regulating IKKβ/IκBα/NF-κB-mediated macrophage polarization. Phytomedicine. 2022 Jul;101:154093. doi: 10.1016/j.phymed.2022.154093. CrossRef PubMed
  18. Wang L, Ji T, Yuan Y , Fu H, Wang Y , Tian S, Hu J, Wang L, Wang Z. High-fructose corn syrup promotes proinflammatory Macrophage activation via ROS-mediated NF-κB signaling and exacerbates colitis in mice. Int Immunopharmacol. 2022 Aug;109:108814. doi: 10.1016/j. intimp.2022.108814. CrossRef PubMed
  19. Chen Y, Liu Q, Meng X, Zhao L, Zheng X, Feng W. Catalpol ameliorates fructose-induced renal inflammation by inhibiting TLR4/MyD88 signaling and uric acid reabsorption. Eur J Pharmacol. 2024 Mar 15;967:176356. doi: 10.1016/j.ejphar.2024.176356. CrossRef PubMed
  20. Li Y , Qiao Y , Wang H, Wang Z. Intraperitoneal injection of PDTC on the NF-kB signaling pathway and osteogenesis indexes of young adult rats with anterior palatal suture expansion model. PLoS One. 2021 Jul 9;16(7):e0243108. doi: 10.1371/journal.pone.0243108. CrossRef PubMed PubMedCentral
  21. Hu G, Xu L, Ito O. Impacts of high fructose diet and chronic exercise on nitric oxide synthase and oxidative stress in rat kidney. Nutrients. 2023 May 16;15(10):2322. doi: 10.3390/nu15102322. CrossRef PubMed PubMedCentral
  22. Vratarić M, Šenk V , Bursać B, Gligorovska L, Ignjatović D, Kovačević S, Veličković N, Djordjevic A. Fructose diet ameliorate effects of macrophage migration inhibitory factor deficiency on prefrontal cortex inflammation, neural plasticity, and behavior in male mice. Biofactors. 2023 Jan;49(1):90-107. doi: 10.1002/biof.1802. CrossRef PubMed
  23. Shi JH, Chen YX, Feng Y , Yang X, Lin J, et al. Fructose overconsumption impairs hepatic manganese homeostasis and ammonia disposal. Nat Commun. 2023 Dec 1;14(1):7934. doi: 10.1038/s41467-023-43609-0. CrossRef PubMed PubMedCentral
  24. Bahadoran Z, Mirmiran P, Ghasemi A. Adipose organ dysfunction and type 2 diabetes: Role of nitric oxide. Biochem Pharmacol. 2024 Mar;221:116043. doi: 10.1016/j. bcp.2024.116043. CrossRef PubMed
  25. Hill MA, Yang Y , Zhang L, Sun Z, Jia G, Parrish AR, Sowers JR. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021 Jun;119:154766. doi: 10.1016/j.metabol.2021.154766. CrossRef PubMed
  26. Wang Y, Liao S, Pan Z, Jiang S, Fan J, Yu S, Xue L, Yang J, Ma S, Liu T, Zhang J, Chen Y . Hydrogen sulfide alleviates particulate matter-induced emphysema and airway inflammation by suppressing ferroptosis. Free Radic Biol Med. 2022 Jun;186:1-16. doi: 10.1016/j. freeradbiomed.2022.04.014. CrossRef PubMed
  27. Strutynska NA, Korkach YuP, Mys LA, Luchkova AYu, Sagach VF. L-cysteine stimulates endogenous hydrogen sulfide synthesis, suppresses oxidative stress and mitochondrial permeability transition pore opening in the heart of old rats. Fiziol Zh. 2020; 66(2-3): 3-12. doi: 10.15407/fz66.2-3.003. CrossRef
  28. Zhang J, Xu J, Lin X, Tang F, Tan L. CTRP3 ameliorates fructose-induced metabolic associated fatty liver disease via inhibition of xanthine oxidase-associated oxidative stress. Tissue Cell. 2021 Oct;72:101595. doi: 10.1016/j. tice.2021.101595. CrossRef PubMed
  29. Bortolotti M, Polito L, Battelli MG, Bolognesi A. Xanthine oxidoreductase: One enzyme for multiple physiological tasks. Redox Biol. 2021 May;41:101882. doi: 10.1016/j. redox.2021.101882. CrossRef PubMed PubMedCentral
  30. Wang X, Dong L, Dong Y , Bao Z, Lin S. Corn silk flavo-noids ameliorate hyperuricemia via PI3K/AKT/NF-κB pathway. J Agric Food Chem. 2023 Jun 21;71(24):9429- 40. doi: 10.1021/acs.jafc.3c03422. CrossRef PubMed
  31. Yang LJ, He JB, Jiang Y , Li J, Zhou ZW, Zhang C, Tao X, Chen AF, Peng C, Xie HH. Berberine hydrochloride inhibits migration ability via increasing inducible NO synthase and peroxynitrite in HTR-8/SVneo cells. J Ethnopharmacol. 2023 Apr 6;305:116087. doi: 10.1016/j. jep.2022.116087. CrossRef PubMed
  32. Ziegler K, Kunert AT, Reinmuth-Selzle K, Leifke AL, Widera D, Weller MG, Schuppan D, Fröhlich-Nowoisky J, Lucas K, Pöschl U. Chemical modification of proinflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress. Redox Biol. 2020 Oct;37:101581. doi: 10.1016/j.redox.2020.101581. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.