Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2025; 71(2): 93-105


Potential prognostic markers of cellular senescence in age-associated cardiovascular pathology

V. Kyryk1,2, O. Parkhomenko1

  1. M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  2. D. F. Chebotarev State Institute of Gerontology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz71.02.093


Abstract

The review addresses the issue of cellular senescence, its impact on the development of age-associated cardiovascular diseases, and its prognostic perspective. We appreciated the relationship between cellular senescence and overall organismal aging, focusing on endothelial dysfunction in cardiac patients. The review also discusses the manifestations of cellular aging and highlights their markers that can be used for comprehensive diagnosis and prediction of the risk of acute cardiovascular events. The potential and limitations of senolytic therapy for eliminating senescent cells and reducing systemic inflammation are discussed. The review emphasizes the importance of developing new methods for identifying markers of cellular senescence and implementing personalized approaches in the treatment of age-associated cardio- vascular diseases within the framework of modern precision medicine.

Keywords: cellular senescence; aging; cardiovascular diseases; endothelial dysfunction; senolytics

References

  1. Mehdizadeh M, Aguilar M, Thorin E, Ferbeyre G, Nattel S. The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nat Rev Cardiol. 2022 Apr;19(4):250-64. doi: 10.1038/s41569-021-00624-2. CrossRef PubMed
  2. Casella G, Munk R, Kim KM, Piao Y , De S, Abdelmohsen K, Gorospe M. Transcriptome signature of cellular senescence. Nucl Acids Res. 2019 Aug 22;47(14):7294- 305. doi: 10.1093/nar/gkz555. CrossRef PubMed PubMedCentral
  3. Tang Y, Jin B, Zhou L, Lu W. MeQTL analysis of childhood obesity links epigenetics with a risk SNP rs17782313 near MC4R from meta-analysis. Oncotarget. 2017;8:2800-6. doi: 10.18632/oncotarget.13742. CrossRef PubMed PubMedCentral
  4. Roetker NS, Pankow JS, Bressler J, Morrison AC, Boerwinkle E. Prospective study of epigenetic age acceleration and incidence of cardiovascular disease outcomes in the ARIC study (atherosclerosis risk in communities). Circ Genom Precis Med. 2018 Mar;11(3):e001937. doi: 10.1161/CIRCGEN.117.001937. CrossRef PubMed PubMedCentral
  5. Li D, Li Y , Ding H, Wang Y , Xie Y , Zhang X. Cellular senescence in cardiovascular diseases: from pathogenesis to therapeutic challenges. J Cardiovascul Dev Dis. 2023 Oct 23;10(10):439. doi: 10.3390/jcdd10100439. CrossRefjcdd10100439" id="ref_href_id" target="blank"">CrossRef PubMed PubMedCentral
  6. Shirai T, Okazaki S, Tanifuji T, Numata S, Nakayama T, Yoshida T, et al. Meta-analyses of epigenetic age acceleration and GrimAge components of schizophrenia or first-episode psychosis. Schizophrenia (Heidelb). 2024 Nov 15;10(1):108. doi: 10.1038/s41537-024-00531-8 CrossRef PubMed PubMedCentral
  7. Sun X, Chen W, Razavi AC, Shi M, Pan Y , Li C, et al. Associations of epigenetic age acceleration with CVD risks across the lifespan: The bogalusa heart study. JACC Basic Transl Sci. 2024 Apr 3;9(5):577-90. doi: 10.1016/j. jacbts.2024.01.018. CrossRefjacbts.2024.01.018" id="ref_href_id" target="blank"">CrossRef PubMed PubMedCentral
  8. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018 Apr 18;10(4):573-91. doi: 10.18632/aging.101414. V. Kyryk, O. Parkhomenko 102 CrossRef PubMed PubMedCentral
  9. Salameh Y, Bejaoui Y, El Hajj N. DNA Methylation biomarkers in aging and age-related diseases. Front Genet. 2020 Mar 10;11:171. doi: 10.3389/fgene.2020.00171. CrossRef PubMed PubMedCentral
  10. Can Hu, Xin Zhang, Teng Teng, Zhen-Guo Ma, Qi-Zhu Tang. Cellular senescence in cardiovascular diseases: A systematic review. Aging Dis. 2022; 13(1): 103-28 CrossRef." id="ref_href_id" target="blank"">CrossRef CrossRef PubMed PubMedCentral
  11. Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol. 2022 Oct;18(10):611-27. doi: 10.1038/ s41581-022-00601-z. CrossRef PubMed PubMedCentral
  12. Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: aging, cancer, and injury. Physiol Rev. 2019; 99(2):1047-78. doi: 10.1152/ physrev.00020.2018. CrossRefphysrev.00020.2018" id="ref_href_id" target="blank"">CrossRef PubMed
  13. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trend Cell Biol. 2018; 28(6):436-53. doi: 10.1016/j.tcb.2018.02.001. CrossReftcb.2018.02.001" id="ref_href_id" target="blank"">CrossRef PubMed
  14. Yu J, Shi J, Zhang Y , Zhang Y , Huang Y , Chen Zh, et al. The replicative senescent mesenchymal stem/stromal cells defect in DNA damage response and anti-oxidative capacity. Int J Med Sci. 2018; 15(8):771-81. doi: 10.7150/ ijms.24635. CrossRef PubMed PubMedCentral
  15. Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020 Nov;288(5):518-36. doi: 10.1111/joim.13141. CrossRef PubMed PubMedCentral
  16. Chandeck C, Mooi WJ. Oncogene-induced cellular senescence. Adv Anat Pathol. 2010 Jan;17(1):42-8. doi: 10.1097/PAP.0b013e3181c66f4e. CrossRef PubMed
  17. Debacq-Chainiaux F, Ben Ameur R., Bauwens E, Dumortier E, Toutfaire M, Toussaint O. Stress-induced (premature) senescence. In: Rattan S, Hayflick L, editorts, Cellular Ageing and Replicative Senescence. Healthy Ageing and Longevity. Cham: Springer; 2016. https:// doi.org/10.1007/978-3-319-26239-0_13. CrossRef
  18. de Magalhães JP, Passos JF. Stress, cell senescence and organismal ageing. Mech Ageing Dev. 2018 Mar;170:2-9. doi: 10.1016/j.mad.2017.07.001. CrossRefmad.2017.07.001" id="ref_href_id" target="blank"">CrossRef PubMed
  19. Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 2021; 9:645593. doi: 10.3389/fcell.2021.645593. CrossRef PubMed PubMedCentral
  20. González-Gualda E, Baker AG, Fruk L, Muñoz-Espín D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J. 2021; 288(1):56-80. doi: 10.1111/febs.15570 CrossRef PubMed
  21. Neurohr GE, Terry RL, Lengefeld J, Bonney M, Brittingham GP, Moretto F, et al. Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell. 2019 Feb 21;176(5):1083-97.e18. doi: 10.1016/j. cell.2019.01.018. CrossRefcell.2019.01.018" id="ref_href_id" target="blank"">CrossRef PubMed PubMedCentral
  22. Das UN. "Cell membrane theory of senescence" and the role of bioactive lipids in aging, and aging associated diseases and their therapeutic implications. Biomolecules. 2021 Feb 8;11(2):241. doi: 10.3390/biom11020241. CrossRefbiom11020241" id="ref_href_id" target="blank"">CrossRef PubMed PubMedCentral
  23. Fenech M. Cytokinesis-block micronucleus cytome assay evolution into a more comprehensive method to measure chromosomal instability. Genes (Basel). 2020;11(10):1203. CrossRef genes11101203. CrossRefgenes11101203 PubMed PubMedCentral
  24. Hamada M, Varkoly KS, Riyadh O, Beladi R, Munuswa-my-Ramanujam G, Rawls A, et al. Urokinase-type plasminogen activator receptor (uPAR) in inflammation and disease: A unique inflammatory pathway activator. Biomedicines. 2024 May 24;12(6):1167. doi: 10.3390/ biomedicines12061167. CrossRefbiomedicines12061167 PubMed PubMedCentral
  25. Alfano D, Franco P, Stoppelli MP. Modulation of cellular function by the urokinase receptor signalling: A mechanistic view. Front Cell Dev Biol. 2022 Apr 8;10:818616. doi: 10.3389/fcell.2022.818616. CrossRef PubMed PubMedCentral
  26. Onorati A, Havas AP, Lin B, Rajagopal J, Sen P, Adams PD, Dou Z. Upregulation of PD-L1 in senescence and aging. Mol Cell Biol. 2022 Oct 20;42(10):e0017122. doi: 10.1128/mcb.00171-22. CrossRef PubMed PubMedCentral
  27. Gorgoulis VG, Pratsinis H, Zacharatos P, Demoliou C, Sigala F, Asimacopoulos PJ, et al. P53-dependent ICAM- 1 overexpression in senescent human cells identified in atherosclerotic lesions. Lab Invest. 2005;85:502-11. doi: 10.1038/labinvest.3700241. CrossRef PubMed
  28. Kim KM, Noh JH, Bodogai M, Martindale JL, Yang X, Indig FE, et al. Identification of senescent cell surface targetable protein DPP4. Genes Dev. 2017 Aug 1;31(15):1529-34. doi: 10.1101/gad.302570.117. CrossRef PubMed PubMedCentral
  29. Hoare M, Ito Y , Kang T-W, Weekes MP, Matheson NJ, Patten DA, et al. NOTCH1 Mediates a switch between two distinct secretomes during senescence. Nat. Cell Biol. 2016;18:979-92. doi: 10.1038/ncb3397. CrossRef PubMed PubMedCentral
  30. Frescas D, Roux CM, Aygun-Sunar S, Gleiberman AS, Krasnov P, Kurnasov OV , et al. Senescent cells expose and secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive antibody. Proc Natl Acad Sci USA. 2017;114:E1668-77. doi: 10.1073/pnas.1614661114. CrossRef PubMed PubMedCentral
  31. Chong M, Yin T, Chen R, Xiang H, Yuan L, Ding Y, et al. cd36 initiates the secretory phenotype during the establishment of cellular senescence. EMBO Rep. 2018;19:e45274. doi: 10.15252/embr.201745274. CrossRef PubMed PubMedCentral
  32. Madsen SD, Russell KC, Tucker HA, Glowacki J, Bunnell BA, O'Connor KC. Decoy TRAIL Receptor CD264: A cell surface marker of cellular aging for human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther. 2017;8:201. doi: 10.1186/s13287-017-0649-4. CrossRef PubMed PubMedCentral
  33. Hernández-Mercado E, Prieto-Chávez JL, Arriaga-Pizano LA, Hernández-Gutierrez S, Mendlovic F, Königsberg M, López-Díazguerrero NE. Increased CD47 and MHC Class I inhibitory signals expression in senescent CD1 primary mouse lung fibroblasts. Int J Mol Sci. 2021 Sep 23;22(19):10215. doi: 10.3390/ijms221910215. CrossRefijms221910215 PubMed PubMedCentral
  34. Kwon Y, Kim JW, Jeoung JA, Kim MS, Kang C. Autophagy is pro-senescence when seen in close-up, but anti-senescence in long-shot. Mol Cell. 2017 Sep 30;40(9):607-12. doi: 10.14348/molcells.2017.0151. CrossRef PubMed PubMedCentral
  35. Fuhrmann-Stroissnigg H, Santiago FE, Grassi D, Ling Y , Niedernhofer LJ, Robbins PD. SA-β-galactosidasebased screening assay for the identification of senoPotential prognostic markers of cellular senescence in age-associated cardiovascular pathology 103 therapeutic drugs. J Vis Exp. 2019;(148). https://doi. org/10.3791/58133. CrossRef PubMed
  36. Wagner J, Damaschke N, Yang B, Truong M, Guenther C, McCormick J, et al. Overexpression of the novel senescence marker β-galactosidase (GLB1) in prostate cancer predicts reduced PSA recurrence. PLoS One. 2015 Apr 15;10(4):e0124366. doi: 10.1371/journal. pone.0124366. CrossRef PubMed PubMedCentral
  37. Koo S, Won M, Li H, Kim WY, Li M, Yan C, et al. Harnessing α-l-fucosidase for in vivo cellular senescence imaging. Chem Sci. 2021; 12(29):10054-62. doi: 10.1039/d1sc02259h. CrossRef PubMed PubMedCentral
  38. Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez Marcos PJ, Zoumpourlis V, Trougakos IP, et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY). 2013 Jan;5(1):37-50. doi: 10.18632/ aging.100527. CrossRef PubMed PubMedCentral
  39. Aird KM, Zhang R. Detection of senescence-associated heterochromatin foci (SAHF). Method Mol Biol. 2013; 965:185-96. doi: 10.1007/978-1-62703-239-1_12. CrossRef PubMed PubMedCentral
  40. Rodier F, Muñoz DP, Teachenor R, Chu V , Le O, Bhaumik D, et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci. 2011 Jan 1;124(Part 1):68-81. doi: 10.1242/jcs.071340. CrossRef PubMed PubMedCentral
  41. Siddiqui MS, François M, Fenech MF, Leifert WR. Persistent γH2AX: A promising molecular marker of DNA damage and aging. Mutat Res Rev Mutat Res. 2015 Oct-Dec;766:1-19. doi: 10.1016/j.mrrev.2015.07.001. CrossRefmrrev.2015.07.001" id="ref_href_id" target="blank"">CrossRef PubMed
  42. Tümpel S, Rudolph KL. The role of telomere shortening in somatic stem cells and tissue aging: lessons from telomerase model systems. Ann New York Acad Sci. 2012; 1266:28-39. doi: 10.1111/j.1749-6632.2012.06547.x. CrossRef PubMed
  43. Lawrence I, Bene M, Nacarelli T, Azar A, Cohen JZ, Torres C, et al. Correlations between age, functional status, and the senescence-associated proteins HMGB2 and p16INK4a. Geroscience. 2018; 40(2):193-9. doi: 10.1007/s11357-018-0015-1. CrossRef PubMed PubMedCentral
  44. Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 2003 Aug 15;22(16):4212-22. doi: 10.1093/emboj/ cdg417. CrossRef PubMed PubMedCentral
  45. Vasileiou PVS, Evangelou K, Vlasis K, Fildisis G, Panayiotidis MI, Chronopoulos E, et al. Mitochondrial homeostasis and cellular senescence. Cells. 2019 Jul 6;8(7):686. doi: 10.3390/cells8070686. CrossRefcells8070686 PubMed PubMedCentral
  46. Correia-Melo C, Marques FD, Anderson R, Hewitt G, Hewitt R, Cole J, et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016 Apr 1;35(7):724-42. doi: 10.15252/ embj.201592862. CrossRef PubMed PubMedCentral
  47. Kim YM, Youn SW, Sudhahar V, Das A, Chandhri R, Cuervo Grajal H, et al. Redox regulation of mitochondrial fission protein Drp1 by protein disulfide isomerase limits endothelial senescence. Cell Rep. 2018 Jun 19;23(12):3565-78. doi: 10.1016/j.celrep.2018.05.054. CrossRefcelrep.2018.05.054" id="ref_href_id" target="blank"">CrossRef PubMed PubMedCentral
  48. Chan KT, Blake S, Zhu H, Kang J, Trigos AS, Madham-shettiwar PB, et al. A functional genetic screen defines the AKT-induced senescence signaling network. Cell Death Differ. 2020 Feb;27(2):725-41. doi: 10.1038/ s41418-019-0384-8. CrossRef PubMed PubMedCentral
  49. Songkiatisak P, Rahman SMT, Aqdas M, Sung MH. NF-κB, a culprit of both inflamm-ageing and declining immunity? Immun Age. 2022 May 17;19(1):20. doi: 10.1186/s12979-022-00277-w. CrossRef PubMed PubMedCentral
  50. Kumar M, Yan P, Kuchel GA, Xu M. Cellular senescence as a targetable risk factor for cardiovascular diseases: Therapeutic Imp5lications: JACC Family Ser. JACC Basic Transl Sci. 2024 Apr 8;9(4):522-34. doi: 10.1016/j. jacbts.2023.12.003. CrossRefjacbts.2023.12.003" id="ref_href_id" target="blank"">CrossRef PubMed PubMedCentral
  51. Song P, Zhao Q, Zou MH. Targeting senescent cells to attenuate cardiovascular disease progression. Age Res Rev. 2020 Jul;60:101072. CrossRef arr.2020.101072. CrossRefarr.2020.101072 PubMed PubMedCentral
  52. Hilser JR, Spencer NJ, Afshari K, Gilliland FD, Hu H, Deb A, et al. COVID-19 Is a coronary artery disease risk equivalent and exhibits a genetic interaction with ABO blood type. Arterioscler Thromb Vasc Biol. 2024 Nov;44(11):2321-33. doi: 10.1161/ATVBAHA.124.321001. CrossRef PubMed PubMedCentral
  53. Stătescu C, Anghel L, Tudurachi BS, Leonte A, Benchea LC, Sascău RA. From classic to modern prognostic biomarkers in patients with acute myocardial infarction. Int J Mol Sci. 2022 Aug 15;23(16):9168. doi: 10.3390/ ijms23169168. CrossRefijms23169168 PubMed PubMedCentral
  54. Alexander Y , Osto E, Schmidt-Trucksäss A, Shechter M, Trifunovic D, Duncker DJ, et al. Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovascul Res. 2021 Jan 1;117(1):29-42. doi: 10.1093/cvr/cvaa085. CrossRef PubMed PubMedCentral
  55. Wang P, Konja D, Singh S, Zhang B, Wang Y . endothelial senescence: from macro- to micro-vasculature and its implications on cardiovascular health. Int J Mol Sci. 2024 Feb 6;25(4):1978. doi: 10.3390/ijms25041978. CrossRefijms25041978 PubMed PubMedCentral
  56. Bloom SI, Islam MT, Lesniewski LA, Donato AJ. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol. 2023;20(1):38-51. doi: 10.1038/s41569-022-00739-0). CrossRef PubMed PubMedCentral
  57. Kumboyono K, Chomsy IN, Nurwidyaningtyas W, Cesa FY , Tjahjono CT, Wihastuti TA. Differences in senescence of late endothelial progenitor cells in non-smokers and smokers. Tob Induc Dis. 2021; 19:10. doi: 10.18332/ tid/135320. CrossRef PubMed PubMedCentral
  58. Tang X, Li PH, Chen HZ. Cardiomyocyte senescence and cellular communications within myocardial microenvironments. Front Endocrinol (Lausanne). 2020 May 21;11:280. doi: 10.3389/fendo.2020.00280. CrossRef PubMed PubMedCentral
  59. Shimizu I, Minamino T. Cellular senescence in cardiac V. Kyryk, O. Parkhomenko 104 diseases. J Cardiol. 2019 Oct;74(4):313-9. https://doi. org/10.1016/j.jjcc.2019.05.002. CrossRefjjcc.2019.05.002 PubMed
  60. Luan Y , Zhu X, Jiao Y , Liu H, Huang Z, Pei J, et al. Cardiac cell senescence: molecular mechanisms, key proteins and therapeutic targets. Cell Death Discov. 2024 Feb 14;10(1):78. doi: 10.1038/s41420-023-01792-5. CrossRef PubMed PubMedCentral
  61. Herrmann W, Herrmann M. The importance of telo-mere shortening for atherosclerosis and mortality. J Cardiovascul Dev Dis. 2020 Aug 6;7(3):29. doi: 10.3390/ jcdd7030029. CrossRefjcdd7030029 PubMed PubMedCentral
  62. Oh KS, Febres-Aldana CA, Kuritzky N, Ujueta F, Arenas IA, Sriganeshan V , et al. Cellular senescence evaluated by P16INK4a immunohistochemistry is a prevalent phenomenon in advanced calcific aortic valve disease. Cardiovascul Pathol. 2021 May-Jun;52:107318. doi: 10.1016/j.carpath.2021.107318. CrossRefcarpath.2021.107318 PubMed
  63. Yan J, Chen S, Yi Z, Zhao R, Zhu J, Ding S, Wu J. The role of p21 in cellular senescence and aging-related diseases. Mol Cell. 2024 Nov;47(11):100113. doi: 10.1016/j. mocell.2024.100113. CrossRefmocell.2024.100113 PubMed PubMedCentral
  64. Evangelou K, Vasileiou PVS, Papaspyropoulos A, Hazapis O, Petty R, Demaria M, Gorgoulis VG. Cellular senescence and cardiovascular diseases: moving to the "heart" of the problem. Physiol Rev. 2023 Jan 1;103(1):609-47. CrossRef physrev.00007.2022. CrossRefphysrev.00007.2022 PubMed
  65. Hu C, Zhang X, Teng T, Ma ZG, Tang QZ. Cellular senescence in cardiovascular diseases: A systematic review. Aging Dis. 2022 Feb 1;13(1):103-28. https://doi. org/10.14336/AD.2021.0927. CrossRef PubMed PubMedCentral
  66. Schafer MJ, Zhang X, Kumar A, Atkinson EJ, Zhu Y, Jachim S, et al. The senescence-associated secretome as an indicator of age and medical risk. JCI Insight. 2020; 5(12):e133668. doi: 10.1172/jci.insight.133668. CrossRef PubMed PubMedCentral
  67. Biran A, Zada L, Abou Karam P, Vadai E, Roitman L, Ovadya Y , et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017; 16(4):661- 71. doi: 10.1111/acel.12592. CrossRef PubMed PubMedCentral
  68. Han Y, Kim SY. Endothelial senescence in vascular diseases: current understanding and future opportunities in senotherapeutics. Exp Mol Med. 2023 Jan;55(1):1-12. doi: 10.1038/s12276-022-00906-w. CrossRef PubMed PubMedCentral
  69. Fujino T, Asada S, Goyama S, Kitamura T. Mechanisms involved in hematopoietic stem cell aging. Cell Mol Life Sci. 2022 Aug 8;79(9):473. doi: 10.1007/s00018- 022-04356-5. CrossRef PubMed PubMedCentral
  70. Delgobo M, Heinrichs M, Hapke N, Ashour D, Appel M, Srivastava M, et al. Terminally differentiated CD4+ T cells promote myocardial inflammaging. Front Immunol. 2021 Feb 19;12:584538. doi: 10.3389/fimmu.2021.584538. CrossRef PubMed PubMedCentral
  71. Tae Yu H, Youn JC, Lee J, Park S, Chi HS, Lee J, et al. Characterization of CD8(+)CD57(+) T cells in patients with acute myocardial infarction. Cell Mol Immun. 2015 Jul;12(4):466-73. doi: 10.1038/cmi.2014.74. CrossRef PubMed PubMedCentral
  72. Youn JC, Jung MK, Yu HT, Kwon JS, Kwak JE, Park SH, et al. Increased frequency of CD4+CD57+ senescent T cells in patients with newly diagnosed acute heart failure: exploring new pathogenic mechanisms with clinical relevance. Sci Rep. 2019; 9: 12887. doi: 10.1038/ s41598-019-49332-5. CrossRef PubMed PubMedCentral
  73. Yu Y , Lin K, Wu H, Hu M, Yang X, Wang J, et al. Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities. Cell Regen. 2024 Oct 2;13(1):20. doi: 10.1186/s13619-024-00201-1. CrossRef PubMed PubMedCentral
  74. Li H, Wan L, Liu M, Ma E, Huang L, Yang Y , Li Q, et al. SARS-CoV-2 spike-induced syncytia are senescent and contribute to exacerbated heart failure. PLoS Pathog. 2024 Aug 5;20(8):e1012291. doi: 10.1371/journal. ppat.1012291. CrossRef PubMed PubMedCentral
  75. Cao M, Ruan L, Huang Y , Wang J, Yan J, Sang Y , et al. Premature CD4+ T cells senescence induced by chronic infection in patients with acute coronary syndrome. Aging Dis. 2020 Dec 1;11(6):1471-80. doi: 10.14336/ AD.2020.0203. CrossRef PubMed PubMedCentral
  76. Tobin SW, Alibhai FJ, Weisel RD, Li RK. considering cause and effect of immune cell aging on cardiac repair after myocardial infarction. Cells. 2020 Aug 13;9(8):1894. doi: 10.3390/cells9081894. CrossRefcells9081894 PubMed PubMedCentral
  77. Li X, Chen M, Chen X, He X, Li X, Wei H, et al. TRAP1 drives smooth muscle cell senescence and promotes atherosclerosis via HDAC3-primed histone H4 lysine 12 lactylation. Eur Heart J. 2024 Oct 14;45(39):4219-35. doi: 10.1093/eurheartj/ehae379. CrossRef PubMed
  78. Deng Y , Li Q, Zhou F, Li G, Liu J, Lv J, Li L, Chang D. Telomere length and the risk of cardiovascular diseases: A Mendelian randomization study. Front Cardiovascul Med. 2022 Oct 24;9:1012615. doi: 10.3389/ fcvm.2022.1012615. CrossRef PubMed PubMedCentral
  79. Sun Y , Li Q, Kirkland JL. Targeting senescent cells for a healthier longevity: the roadmap for an era of global aging. Life Med. 2022 Aug 9;1(2):103-19. doi: 10.1093/ lifemedi/lnac030. CrossRef PubMed PubMedCentral
  80. Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, et al. Senescent cells: A therapeutic target in cardiovascular diseases. Cells. 2023 May 2;12(9):1296. doi: 10.3390/cells12091296. CrossRefcells12091296 PubMed PubMedCentral
  81. Secomandi L, Borghesan M, Velarde M, Demaria M. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Hum Reprod Update. 2022 Feb 28;28(2):172-89. doi: 10.1093/ humupd/dmab038. CrossRef PubMed PubMedCentral
  82. Gu Y , Avolio E, Alvino VV , Thomas AC, Herman A, Miller PJ, et al. The tyrosine kinase inhibitor Dasatinib reduces cardiac steatosis and fibrosis in obese, type 2 diabetic mice. Cardiovascul Diabet. 2023 Aug 17;22(1):214. doi: 10.1186/s12933-023-01955-9. CrossRef PubMed PubMedCentral
  83. Takaba M, Iwaki T, Arakawa T, Ono T, Maekawa Y, Umemura K. Dasatinib suppresses atherosclerotic lesions by suppressing cholesterol uptake in a mouse model of hypercholesterolemia. J Pharmacol Sci. 2022 Jul;149(3):158-65. doi: 10.1016/j.jphs.2022.04.009. CrossRefjphs.2022.04.009 PubMed
  84. Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, et al. Therapeutic application of quercetin in agingrelated diseases: SIRT1 as a potential mechanism. Potential prognostic markers of cellular senescence in age-associated cardiovascular pathology 105 Front Immunol. 2022 Jul 22;13:943321. doi: 10.3389/ fimmu.2022.943321. CrossRef PubMed PubMedCentral
  85. Pignolo RJ, Passos JF, Khosla S, Tchkonia T, Kirkland JL. Reducing senescent cell burden in aging and disease. Trends Mol Med. 2020 Jul;26(7):630-638. doi: 10.1016/j. molmed.2020.03.005 CrossRefmolmed.2020.03.005 PubMed PubMedCentral
  86. Riessland M, Ximerakis M, Jarjour AA, Zhang B, Orr ME. Therapeutic targeting of senescent cells in the CNS. Nat Rev Drug Discov. 2024 Sep 30. doi: 10.1038/s41573- 024-01033-z.
  87. Demaria M. Senescent cells: New target for an old treatment? Mol Cell Oncol. 2017; 4(3):e1299666. doi: 10.1080/23723556.2017.1299666. CrossRef PubMed PubMedCentral
  88. Lee SH, Lee JH, Lee HY, Min KJ. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019 Jan;52(1):24-34. doi: 10.5483/BMBRep.2019.52.1.290 CrossRef PubMed PubMedCentral
  89. Hardeland R. Aging, melatonin, and the pro- and anti-inflammatory networks. Int J Mol Sci. 2019;20:1223. CrossRefijms20051223 PubMed PubMedCentral
  90. Wang R, Yu Z, Sunchu B, Shoaf J, Dang I, Zhao S, et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell. 2017 Jun;16(3):564-74. doi: 10.1111/acel.12587. CrossRef PubMed PubMedCentral
  91. Wang Y, Hekimi S. Understanding ubiquinone. Trend Cell Biol. 2016 May;26(5):367-78. doi: 10.1016/j. tcb.2015.12.007. CrossReftcb.2015.12.007 PubMed
  92. Knowles L, Nadeem N, Chowienczyk PJ. Do anti-tumour necrosis factor-α biologics affect subclinical measures of atherosclerosis and arteriosclerosis? A systematic review. Br J Clin Pharmacol. 2020 May;86(5):837-51. doi: 10.1111/bcp.14215. CrossRef PubMed PubMedCentral
  93. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017 Sep 21;377(12):1119-31. doi: 10.1056/ NEJMoa1707914. CrossRef PubMed
  94. Everett BM, McFadyen JG, Thuren T, Libby P, Glynn RJ, Ridker PM. Inhibition of interleukin-1β and reduction in atherothrombotic cardiovascular events in the CANTOS trial. J Am Coll Cardiol 2020;76:1660-70. CrossRefjacc.2020.08.011 PubMed
  95. Schnitzer TJ, Easton R, Pang S, Levinson DJ, Pixton G, Viktrup L, et al. Effect of tanezumab on joint pain, physical function, and patient global assessment of osteoarthritis among patients with osteoarthritis of the hip or knee: A randomized clinical trial. JAMA. 2019 Jul 2;322(1):37-48. doi: 10.1001/jama.2019.8044. CrossRef PubMed PubMedCentral
  96. Mai W, Liao Y. Targeting IL-1β in the treatment of atherosclerosis. Front Immunol. 2020 Dec 10;11:589654. doi: 10.3389/fimmu.2020.589654. CrossRef PubMed PubMedCentral
  97. Amor C, Feucht J, Leibold J, Ho Y-J, Zhu C, Alonso-Cur-be lo D, et al. Senolytic CAR T cells reverse senescenceassociated pathologies. Nature. 2020;583:127-32. doi: 10.1038/s41586-020-2403-9. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.