|
|
|
|
CATION CHANNELS - MOLECULAR TARGETS FOR POTENTIAL DRUGS WITH AN ANALGESIC MECHANISM OF ACTION
M.Ya. Golovenko
A.V. Bogatsky Physical-Chemical Institute of NAS of Uktaine,
Odesa, Ukraine
DOI: https://doi.org/10.15407/fz68.05.089
Abstract
Ion channels ensure the functioning of the nervous system
because they are involved in the depolarization of neurons,
axonal conduction and the release of neurotransmitters. They
are located in the membranes of all excitable tissues and are
involved in the mechanisms of nociception. Modulation of
ion channel signaling by small molecules can be effective in
inhibiting the course of pain syndromes of various etiologies.
A small number of ion channels are currently identified as
potential targets for the development of antinociceptive
drugs, as evidenced by medicinal chemistry data and various
biophysical and pharmacological studies. This review provides
examples of selective cation channel modulators as novel
therapeutic agents for analgesia and prospects for the creation
of innovative channel-targeted analgesic drugs.
Keywords:
pain; cation channels; iGluR; 5-HT; TRP; CaV; Na; KV; ligands; analgesia
References
Middleton KR, Hing E. National Hospital Ambulatory Medical Care Survey: 2004 outpatient department summary. Advance data from vital and health statistics
- No. 373. Hyattsville, MD: National Center for Health Statistics. 2006.
- Lin-Man Weng, Xuan Su, Xue-Qiang Wang. Pain symptoms in patients with Coronavirus disease (COVID-19): A literature review. J Pain Res. 2021;14:147-59.
CrossRef
PubMed PubMedCentral
- Kissin I. The development of new analgesics over the past 50 years: a lack of real breakthrough drugs. Anesth Analg. 2010;110(3):780-9.
CrossRef
PubMed
- Romanenko SV, Kostyuk PG, Kostyuk EP. Transmembrane calcium signaling: role in nociception. J Acad Med Sci Ukr. 2008;14(1):3-25.
- Duzhyy DE, Voitenko NV, Belan PV. Peripheral inflammation results in increased excitability of capsaicininsensitive nociceptive DRG neurons mediated by upregulation of ASICs and voltage-gated ion channels. Front Cell Neurosci. 2021 Oct 18;15:723295.
CrossRef
PubMed PubMedCentral
- Kostuk OP, Kostuk PG. Peculiarities of ion channels and modulation of their functions in neurons belonging to the nociceptive system. Neurophysiology. 2009;41(3): 241-50.
CrossRef
- Basbaum AI, Bautista DM, Scherrer G. Cellular and molecular mechanisms of pain. Cell. 2009;139;267-84.
CrossRef
PubMed PubMedCentral
- Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001 Sep 13;413(6852):203-10.
CrossRef
PubMed
- Katalin Tóth. Diversity of ion channels. J Physiol. 2021;l599(10):2603-4.
CrossRef
PubMed
- Shuba YM. Fundamentals of molecular physiology of ion channels. Kyiv: Naukova dumka, 2010.
- Li S, Wong AHC, Liu F. Ligand-gated ion channel interacting proteins and their role in neuroprotection. Front Cell Neurosci. 2014;8:125-32.
CrossRef
PubMed PubMedCentral
- Xu L, Ding X, Wang T. Voltage-gated sodium channels: structures, functions, and molecular modeling. Drug Discov Today. 2019;24(7);1389-97.
CrossRef
PubMed
- Stevens M, Peigneur S, Tytgat J. Neurotoxins and their binding areas on voltage-gated sodium channels. Front Pharmacol. 2011;2:71-9.
CrossRef
PubMed PubMedCentral
- Skerratt S, West C. Ion channel therapeutics for pain Channels (Austin). 2015;9(6):344-51.
CrossRef
PubMed PubMedCentral
- Musazzi L, Treccan Gi, Mallei A, Popol M. The action of antidepressants on the glutamate system: regulation of glutamate release and glutamate receptors. Biol Psychiatr. 2013;73(12):1180-8.
CrossRef
PubMed
- Yaksh N, Weber E. Effects of intrathecal NMDA and non-NMDA antagonists on acute thermal nociception and their interaction with morphine Anesthesiology. 1998;89(3):715-22.
CrossRef
PubMed
- Wang J, Goffer Y. AMPA receptors and pain-A future therapeutic intervention? Techniques in Regional Anesthesia and Pain Management. 2010; 14: 59-64.
CrossRef
- Sean D, Donevan M, Rogawski A. GYKI 52466, a 2,3-benzodiazepine, is a highly selective, noncompetitive antagonist of AMPA/kainate receptor responses. Neuron. 1993; 10(1):51-9.
CrossRef
- Weiss A, Ogden A, Li X. Gleason S, Calligaro D, Bleakman D, Witkin J. In vitro and in vivo studies in rats with LY293558 suggest AMPA/kainate receptor blockade as a novel potential mechanism for the therapeutic treatment of anxiety disorders. Psychopharmacology. 2006;185:240-7.
CrossRef
PubMed
- Burnstock G, Sawynok J. ATP and adenosine receptors and pain. In P. Beaulieu, D. Lussier, F. Porreca, Dickenson A H (Eds.). Pharmacol Pain. 2010:303-26. Seattle: IASP Press.
- Wen-jun Zhang, Hong-liang Luo, Zheng-ming Zhu. The role of P2X4 receptors in chronic pain: A potential pharmacological target. Biomed Pharmacother. 2020;129:1-9.
CrossRef
PubMed
- Schneider M, Prudic K, Pippel A. Interaction of purinergic P2X4 and P2X7 receptor subunits. Front Pharmacol. 2017;8:860-9.
CrossRef
PubMed PubMedCentral
- Wilkinson WJ, Kemp PJ. The carbon monoxide donor, CORM-2, is an antagonist of ATP-gated, human P2X4 receptors. Purinergic Sign. 2011;7:57-64.
CrossRef
PubMed PubMedCentral
- Kinga Sałat, Barbara Filipek. Antinociceptive activity of transient receptor potential channel TRPV1, TRPA1, and TRPM8 antagonists in neurogenic and neuropathic pain models in mice. J Zhejiang Univ Sci B. 2015 Mar; 16(3):167-78.
CrossRef
PubMed PubMedCentral
- Mukhopadhyay I, Kulkarni A, Aranake S, Karnik P, Shetty M, Thorat S, et al. NTransient receptor potential ankyrin 1 receptor activation in vitro and in vivo by protussive agents: GRC 17536 as a promising anti_tussive therapeutic, PLoS One. 2014;9: e97005.
CrossRef
PubMed PubMedCentral
- Petrushenko MA, Petrushenko EA, Lukyanetz EA. Structure, properties and physiological role of TRPA1 receptors. Physiol J. 2021;67(1):44-56.
CrossRef
- Kort M, Kym P. 2 TRPV1 Antagonists: Clinical setbacks and prospects for future development. Prog Med Chem. 2012; 51:57-70.
CrossRef
PubMed
- Iegorova O, Maximyuk O, Fisyunov A, Krishtal O. Voltage-gated calcium channels: classification and pharmacological properties (Part 1). Physiol J. 2016;62(4):84-94.
CrossRef
PubMed
- Yamamoto T, Takahara A. Recent updates of N-type calcium channel blockers with therapeutic potential for neuropathic pain and stroke. Curr Top Med Chem. 2009;9:377-95.
CrossRef
PubMed
- Lee M. Z944: A first in class T-type calcium channel modulator for the treatment of pain. J Peripheral Nerv Syst. 2014;19 Suppl 2(S2):S11-2.
CrossRef
PubMed
- Nebe J, Vanegas H, Neugebauer V, Schaible HG. Omegaagatoxin IVA, a P-type calcium channel antagonist, reduces nociceptive processing in spinal cord neurons with input from the inflamed but not from the normal knee joint-an electrophysiological study in the rat in vivo. Eur J Neurosci. 1997;9:2193-201.
CrossRef
PubMed
- Dolphin AC. The α2δ subunits of voltage-gated calcium channels. BBA. 2013;1828(7):1541-9.
CrossRef
PubMed
- Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006; 444(7121):894-8.
CrossRef
PubMed PubMedCentral
- Theile JW, Cummins TR. Recent developments regarding voltage-gated sodium channel blockers for the treatment of inherited and acquired neuropathic pain syndromes. Front Pharmacol. 2011;2:1-14.
CrossRef
PubMed PubMedCentral
- Alexandrou AJ, Brown AR, Chapman ML, Estacion M, Turner J, Wilbrey A, Payne EC, Gutteridge A, Cox PJ. Subtype selective small molecule inhibitors reveal a fundamental role for Nav1.7 in nociceptor electrogenesis, axonal conduction and presynaptic release. 2016; PLoS One 11:e0152405.
CrossRef
PubMed PubMedCentral
- Binshtok AM, Bean BP, Woolf CJ. Inhibition of nociceptors by TRPV1 -mediated entry of impermeant sodium channel blockers. Nature. 2007;449(7162): 607-10.
CrossRef
PubMed
- McGaraughty S, Chu KL, Scanio MJ. A selective Nav1.8 sodium channel blocker, A-803467 [5-(4-chlorophenylN-(3,5-dimethoxyphenyl) furan-2-carboxamide], attenuates spinal neuronal activity in neuropathic rats. J Pharmacol Exp Ther. 2008; 324(3):1204-11.
CrossRef
PubMed
- Theile JW, Fuller MD, Chapman M. The Selective Nav1.7 inhibitor, PF-05089771, interacts equivalently with fast and slow inactivated Nav1.7 channels. Mol Pharmacol. 2016;90:540-8.
CrossRef
PubMed
- FockenT, Liu S, Chahal N, Dauphinais M, Grimwood ME, Chowdhury S, Hemeon I,Bichler P. Discovery of aryl sulfonamides as isoform-selective inhibitors of NaV1.7 with efficacy in rodent pain models. ACS Med Chem Lett. 2016;7(3): 277-82.
CrossRef
PubMed PubMedCentral
- Schmalhofer WA, Calhoun J, Burrows R, Bailey T, Kohler MG, Weinglass AB, et al. ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors. Mol Pharmacol. 2008;74(5):1476-84.
CrossRef
PubMed
- Hui K, McIntyre D, French RJ. Conotoxins as sensors of local pH and electrostatic potential in the outer vestibule of the sodium channel. J Gen Physiol. 2003;122 (1): 6379-85.
CrossRef
PubMed PubMedCentral
- Han TS, Zhang MM, Walewska A, Gruszczynski P, Robertson CR, Cheatham TE, et al. Structurally-minimized μ-conotoxin analogs as sodium channel blockers: implications for designing conopeptide-based therapeutics. Chem Med Chem. 2009;4(3):406-14.
CrossRef
PubMed PubMedCentral
- Markman JD, Dworkin RH. Ion channel targets and treatment efficacy in neuropathic pain. J Pain. 2006;7(1S) Suppl 1:538-47.
CrossRef
PubMed
- Alaa Abd-Elsayed, Markus Jackson, Steven L Gu, Kenneth Fiala, Jianguo Gu. Neuropathic pain and Kv7 voltage-gated potassium channels: The potential role of Kv7 activators in the treatment of neuropathic pain. Mol Pain. 2019;15:1-8.
CrossRef
PubMed PubMedCentral
- J Kornhuber M, Maler J, Wiltfang S, Degner D, Rüthe E. Neuronal potassium channel opening with flupirtine. Fortschr Neurol Psychiatr. 1999;67(10):466-75.
CrossRef
PubMed
- Raffa RB, Pergolizzi JV. The evolving understanding of the analgesic mechanism of action of flupirtine. J Clin Pharmac Ther, 2012;37:4-6.
CrossRef
PubMed
- Lawson K. potassium channels as targets for the management of pain. Cent Nerv Syst Agents Med Chem. 2006; 6:119-28.
CrossRef
- Vadzyuk O B. ATP-sensitive K(+)-channels in muscle cells: features and physiological role. Ukr Biochem J. 2014;86(3):5-22.
CrossRef
- Pan Z, Huang J, Cui W, Long C, Zhang Y, Wang H. J. Targeting hypertension with a new adenosine triphosphate-sensitive potassium channel opener iptakalim. Cardiovascul Pharmacol. 2010;56(3):215-28.
CrossRef
PubMed
- Marsh B, Acosta C, Djouhri L, Lawson SN. Leak K(+) channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behavior. Mol Cell Neurosci. 2012;49:375-86.
CrossRef
PubMed PubMedCentral
- Guo Z, Cao Y-Q. Over-expression of TRESK K+ channels reduces the excitability of trigeminal ganglion nociceptors. PLOS ONE. 2014;9:e87029.
CrossRef
PubMed PubMedCentral
- Vivier D, Soussia IB, Rodrigues N, Lolignier S, Devilliers M, Chatelain FC. Development of the first two-pore domain potassium channel twik-related K+ channel 1-selective agonist possessing in vivo antinociceptive activity. J Med Chem. 2017;60:1076-88.
CrossRef
PubMed
- Calderone V. Large-conductance, Sa(2+)-activated K(+) channels: function, pharmacology and drugs. Curr Med Chem. 2002;9(14):1385-95.
CrossRef
PubMed
- Hewawasam P, Fan W, Knipe J, Moon SL, Boissard CG, Gribkoff VK, Starrett JE. The synthesis and structureactivity relationships of 4-aryl-3-aminoquinolin-2-ones: a new class of calcium-dependent, large conductance, potassium (maxi-K) channel openers targeted for post-stroke neuroprotection. Bioorg Med Chem Lett. 2002;12(13):1779-83.
CrossRef
- Al-Karagholi MA, Ghanizada H, Nielsen CA, Hansen JM, Ashina M. Opening of BKCa channels causes migraine attacks: a new downstream target for the treatment of migraine. Pain. 2021;162(10): 2512-20.
CrossRef
PubMed
- Overington J, Al-Lazikani B, Hopkins A. How many drug targets are there? Drug Discov. 2006;5:993-6.
CrossRef
PubMed
- Dunlop J. Turning up the pace of ion channel screening in drug discovery. Neuropsychopharmacology. 2009;34:253-64.
CrossRef
PubMed
- Raju TN. The nobel chronicles. Lancet. 2000; 355:1022.
CrossRef
- Golovenko MYa. Propoxazepam is an innovative analgesic that inhibits acute and chronic pain and has a polymodal mechanism of action. Visn NAN Ukr. 2021;4:76-90.
|
|
|
|
|
|
|