Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2022; 68(5): 67-78


L.M. Gunina1, I.F. Belenichev2, K.V. Rosova3, Yu.O. Ataman4, V.L. Voitenko4, V.V. Bezugla1

  1. National Ukraine University of Physical Education and Sport, Kyiv, Ukraine
  2. Zaporizhia Medical University, Zaporizhia, Ukraine
  3. Bogomolets Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
  4. Sumy State University, Sumy, Ukraine


In this review, we consider metabolic pathways of energy production from the standpoint of determining the mechanisms of energy supply during intense physical activity and the need to accelerate the process of ATP resynthesis; possible directions of this process intensification are outlined. The most important systems for an athlete to limit his physical performance are the cardiovascular and muscular. That is why we emphasize on energy production in myocardial cells and myocytes. Energy production and energy exchange in cells is carried out by mitochondria, which are the main organelles of energy supply. Functional activity of these organelles is provided by the inner membrane, which contains components of the electron transport chain and ATPase. Physical activity requires ATP resynthesis, which is provided by different types of energyreleased reactions. An important part of our review reveals the analysis of data on the mitochondria themselves, which are key determinants of the functional state of the body’s cells during physical activity. Functional consequences of the changes in mitochondrial structure are of quite importance, especially associated with different configurations of mitochondria and mitochondrium − increasing the number of organelles and crystal density, normalization of the structural and functional state of the inner membrane and its protection from oxidative stress which is inherent in the intense physical activity. Oxidative stress and working hypoxia are a very common cause of further metabolic disorders, even before the formation of hypertrophy of chronic physical exertion, when you have to remove an athlete from the training process. In general, numerous metabolic processes in the myocardium, which are inherent in intense physical activity, undergo negative changes with further activation of athletes. One of the ways to correct energy deficiency caused by prolonged and intense physical activity should be the use of exogenous or endogenous substances involved in energy metabolism.

Keywords: physical activity; heart; energy; mitochondria; myocardial cells; skeletal muscles; ATP; hypoxia.


  1. Luft R. The development of mitochondrial Medicine. Proc Natl Acad USA. 1994;(91):8731-8. CrossRef PubMed PubMedCentral
  2. van der Bliek AM, Sedensky MM, Morgan PG. Cell biology of the mitochondrion. Genetics. 2017;207(3):843-71. CrossRef PubMed PubMedCentral
  3. Melnychuk SD, Khyzhnyak SV, Morozova VS, Stepanova LI, Uman JSC, Wojciech VM. Energy function of mitochondria of rat cardiomyocytes in artificial hypobiosis. Fiziol Zh. 2015;61(2):18-22.
  4. Belyaev NG. Structural changes in muscle fiber during the period of adaptation to physical activity of varying intensity. Nauka. Ynnovatsyy Tekhnol. 2014;1(5):180-8. [Russian].
  5. Rozova KV, Bolgova TV, Tymoshenko KR, Vinnychuk YuD, Gunina LM, Bezugla VV. Reconstruction of skeletal muscle tissues, lungs of rats under conditions of stress hypoxia in the experiment. Fiziol Zh. 2016;62(6):72-80. [Ukrainian]. CrossRef PubMed
  6. Henze, K, Martin W. Evolutionary biology: Essence of mitochondria. Nature. 2003;426(6963):127-8. CrossRef PubMed
  7. Voitenko VL, Gunina LM. Infusion of burstinic acid on the change of the mitochondrial apparatus of skeletal malignancies in the modeling of physical changes in the experiment. Ukr Zh Med Biol Sportu. 2021;6(1/29):293-302. [Ukrainian]. CrossRef
  8. Koch RE, Josefson CC, Hill GE. Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc. 2017;92(3):1459-74. CrossRef PubMed
  9. Kühlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015;13:89. CrossRef PubMed PubMedCentral
  10. Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M, Misso G. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 2020;98:139-53. CrossRef PubMed
  11. Kondrashova MN. Succinic acid is a source of energy in the body. Norma-press. 1991;9:17-8. [Russian].
  12. Vdovenko N, Ivanova A, Khrobatenko O. The use of nanotechnology in the development of special foods for athletes. Aktual Probl Fizych Kultury Sportu. 2016;35(1):11-7. [Ukrainian].
  13. Corciulo C, Lendhey M, Wilder T, Schoen H, Cornelissen AS, Chang G, Kennedy OD, Cronstein BN. Endogenous adenosine maintains cartilage homeostasis and exogenous adenosine inhibits osteoarthritis progression. Nat Commun. 2017;8:15019. CrossRef PubMed PubMedCentral
  14. Sarkar S, Mondal J. Mechanistic insights on ATP's role as hydrotrope. J Phys Chem B. 2021;125(28):7717-31. CrossRef PubMed
  15. Vigh-Larsen JF, Ørtenblad N, Spriet LL, Overgaard K, Mohr M. Muscle glycogen metabolism and high-intensity exercise performance: A narrative review. Sports Med. 2021;51(9):1855-74. CrossRef PubMed
  16. Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nat Metab. 2020;2(9):817-28. CrossRef PubMed
  17. Seaborne RA, Sharples AP. The interplay between exercise metabolism, epigenetics, and skeletal muscle remodeling. Exerc Sport Sci Rev. 2020;48(4):188-200. CrossRef PubMed
  18. Naini A, Gilkerson R, Shanske S, Pang J. Detection of mitochondrial DNA (mtDNA) mutations. Methods Cell Biol. 2020;155:383-400. CrossRef PubMed PubMedCentral
  19. Wu Z, Oeck S, West AP, Mangalhara KC, Sainz AG, Newman LE, Zhang XO, Wu L, Yan Q, Bosenberg M, Liu Y, Sulkowski PL, Tripple V, Kaech SM, Glazer PM, Shadel GS. Mitochondrial DNA Stress signalling protects the nuclear genome. Nat Metab. 2019;1(12):1209-18. CrossRef PubMed PubMedCentral
  20. Zhang Y, Wong HS. Are mitochondria the main contributor of reactive oxygen species in cells? J Exp Biol. 2021;224(Part 5):jeb221606. CrossRef PubMed
  21. Holloszy JO. Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol Pharmacol. 2008;59(Suppl 7):5-18.
  22. Granata C, Jamnick NA, Bishop DJ. Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Med. 2018;48(8):1809-28. CrossRef PubMed
  23. Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des. 2014;20(35):5507-9. CrossRef PubMed
  24. Glancy B, Kim Y, Katti P, Willingham TB. The functional impact of mitochondrial structure across subcellular scales. Front Physiol. 2020;11:541040. CrossRef PubMed PubMedCentral
  25. Marín-García J, Akhmedov AT. Mitochondrial dynamics and cell death in heart failure. Heart Fail Rev. 2016; 21(2):123-36. CrossRef PubMed
  26. Ma M, Chen W, Hua Y, Jia H, Song Y, Wang Y. Aerobic exercise ameliorates cardiac hypertrophy by regulating mitochondrial quality control and endoplasmic reticulum stress through M2 AChR. J Cell Physiol. 2021;236(9):6581-96. CrossRef PubMed
  27. Miranda-Silva D, Rodrigues GP, Alves E, Rizo D, Fonseca ACRG, et al. Mitochondrial reversible changes determine diastolic function adaptations during myocardial (reverse) remodeling. Circ Heart Fail. 2020;13(11):e006170. CrossRef PubMed
  28. Rongjun Zou, Jun Tao, Junxiong Qiu, Wanting Shi, Minghui Zou, Weidan Chen, et al. Ndufs1 deficiency aggravates the mitochondrial membrane potential dysfunction in pressure overload-induced myocardial hypertrophy. Oxid Med Cell Longev. 2021;2021:5545261. CrossRef PubMed PubMedCentral
  29. Moaddel R, Ubaida-Mohien C, Tanaka T, Lyashkov A, Basisty N, Schilling B, et al. Proteomics in aging research: A roadmap to clinical, translational research. Aging Cell. 2021;20(4):e13325. CrossRef PubMed PubMedCentral
  30. Salazar-Ramírez F, Ramos-Mondragón R, GarcíaRivas G. Mitochondrial and sarcoplasmic reticulum interconnection in cardiac arrhythmia. Front Cell Dev Biol. 2021;8:623381. CrossRef PubMed PubMedCentral
  31. Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg. 2018;1859(9):940-50. CrossRef PubMed
  32. Adlam VJ, Harrison JC, Porteous CM, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemiareperfusion injury. FASEB J. 2005;19(9):1088-95. CrossRef PubMed
  33. Song R, Dasgupta C, Mulder C, Zhang L. MicroRNA-210 Controls mitochondrial metabolism and protects heart function in myocardial infarction. Circulation. 2022;145(15):1140-53. CrossRef PubMed
  34. Jiang Q, Yin J, Chen J, Ma X, Wu M, Liu G, et al. Mitochondria-targeted antioxidants: A step towards disease treatment. Oxid Med Cell Longev. 2020;2020:8837893. CrossRef PubMed PubMedCentral
  35. Horikoshi Y, Yan Y, Terashvili M, Wells C, Horikoshi H, et al. Fatty acid-treated induced pluripotent stem cell-derived human cardiomyocytes exhibit adult cardiomyocyte-like energy metabolism phenotypes. Cells. 2019;8(9):1095. CrossRef PubMed PubMedCentral
  36. Frayn KN The glucose-fatty acid cycle: a physiological perspective. Biochem Soc Trans. 2003;31(6):1115-9. CrossRef PubMed
  37. Bianchi VE. Impact of nutrition on cardiovascular function. Curr Probl Cardiol. 2020;45(1):100391. CrossRef PubMed
  38. Fritzen AM, Lundsgaard AM, Kiens B. Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise. Nat Rev Endocrinol. 2020;16(12):683-96. CrossRef PubMed
  39. Cruz MM, Lopes AB, Crisma AR, de Sá RCC, Kuwabara WMT, Curi R, et al. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes. Lipids Health Dis. 2018;17(1):55. CrossRef PubMed PubMedCentral
  40. Tsapko LP, Afanasiev SA, Maksimov IV. Prospects for metabolic therapy in heart disease. Siberian Med J. 2016;31(4):7-12.
  41. Glancy B. Visualizing mitochondrial form and function within the cell. Trends Mol Med. 2020;26(1):58-70. CrossRef PubMed PubMedCentral
  42. Rozova EV, Mankovskaya IN, Mironova GD. Structural and dynamic changes in rat myocardial mitochondria during acute hypoxic hypoxia: the role of the mitochondrial ATP-dependent potassium channel. Biochimija. 2015;80(8):1186-1194. [Ukrainian]. CrossRef PubMed
  43. Cardoso AC, Lam NT, Savla JJ, Nakada Y, Pereira AHM, Elnwasany A, et al. Mitochondrial substrate utilization regulates cardiomyocyte cell cycle progression. Nat Metab. 2020;2(2):167-78. CrossRef PubMed PubMedCentral
  44. Makarewich CA, Baskin KK, Munir AZ, Bezprozvannaya S, Sharma G, Khemtong C, et al. MOXI Is a mitochondrial micropeptide that enhances fatty acid β-oxidation. Cell Rep. 2018;23(13):3701-9. CrossRef PubMed PubMedCentral
  45. Wang Y, Wei L, Wei D, Li X, Xu L, Wei L. Testisspecific lactate dehydrogenase (LDH-C4) in skeletal muscle enhances a pika's sprint-running capacity in hypoxic environment. Int J Environ Res Publ Health. 2015;12(8):9218-36. CrossRef PubMed PubMedCentral
  46. Olesova VM, Markatyuk OYu, Yurova YuYu. Myocardial metabolism and drugs of metabolic action. Cardiologija. 2013;53(1):66-71. [Russian].
  47. Kapilevich LV, Dyakova EY, Kabachkova AV. Sports biochemistry with the basics of sports pharmacology: Textbook. Publ House Tomsk Univ, 2010. [Russian].
  48. Adeva-Andany MM, Calvo-Castro I, FernándezFernández C, Donapetry-García C, Pedre-Piñeiro AM. Significance of L-carnitine for human health. IUBMB Life. 2017;69(8):578-94. CrossRef PubMed
  49. Golovach IU, Avramenko OM. The use of metabolic correctors based on meldonium dihydrate: a modern approach in the combination therapy of coronary heart disease. Med Ukr. 2011;8(154):68-72. [Ukrainian].
  50. Mazur I, Belenichev I, Kucherenko L, Bukhtiyarova N, Puzyrenko A, Khromylova O, et al. Antihypertensive and cardioprotective effects of new compound 1-(β-phenylethyl)-4-amino-1,2,4-triazolium bromide (Hypertril). Eur J Pharmacol. 2019;853:336-44. [Ukrainian]. CrossRef PubMed
  51. Belenichev I, Gorbachova S, Pavlov S, Bukhtiyarova N, Puzyrenko A, Brek O. neurochemical status of nitric oxide in the settings of the norm, ishemic event of central nervous system, and pharmacological Bn intervention. Georg Med News. 2021;(315):169-76.
  52. Ramana KV, Srivastava S, Singhal SS. Lipid peroxidation products in human health and disease 2016. Oxid Med Cell Long. 2017:2163285. CrossRef PubMed PubMedCentral
  53. Raymer GH, Green HJ, Ranney DA. Muscle metabolism and acid-base status during exercise in forearm workrelated myalgia measured with 31P-MRS. J Appl Physiol. 2009;106(4):1198-206. CrossRef PubMed
  54. Sciarretta S, Maejima Y, Zablocki D, Sadoshima J. The role of autophagy in the heart. Annu Rev Physiol. 2018;80:1-26. CrossRef PubMed
  55. Shi B, Ma M, Zheng Y, Pan Y, Lin X. mTOR and Beclin1: Two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. J Cell Physiol. 2019;234(8):12562-68. CrossRef PubMed
  56. Bezugla VV, Rozova KV, Vinnychuk YuD. Differences in structural changes of the myocardium during acute and prolonged exercise in the experiment. Ukr Zh Med Biol Sportu. 2017;(1):120-5. [Ukrainian]. CrossRef
  57. Lakhal-Littleton S, Robbins PA. The interplay between iron and oxygen homeostasis with a particular focus on the heart. J Appl Physiol. 2017;123(4):967-73. CrossRef PubMed PubMedCentral
  58. Yuan X, Braun T. Multimodal regulation of cardiac myocyte proliferation. Circ Res. 2017;121(3):293-309. CrossRef PubMed
  59. Yoshida Y, Shimizu I, Minamino T. Capillaries as a therapeutic target for heart failure. J Atheroscler Thromb. 2022 Apr 1. CrossRef PubMed PubMedCentral
  60. Thonusin C, Pantiya P, Sumneang N, Chunchai T, Nawara W, Arunsak B, Siri-Angkul N, Sriwichaiin S, Chattipakorn SC, Chattipakorn N. Effectiveness of high cardiorespiratory fitness in cardiometabolic protection in prediabetic rats. Mol Med. 2022;28(1):31. CrossRef PubMed PubMedCentral
  61. Mikhalyuk EL, Sivolap VV. Features of the electrocardiogram of persons engaged in sports. Message I (a review). Zaporiz Med Zh. 2019;21/2(113):264-9. [Ukrainian].
  62. Bernardi L. Interval hypoxic training. Adv Exp Med Biol. 2001;502:377-99. CrossRef PubMed
  63. Huang YC, Hsu CC, Wang JS. High-intensity interval training improves erythrocyte osmotic deformability. Med Sci Sports Exerc. 2019;51(7):1404-12. CrossRef PubMed
  64. Gavenauskas BL, Mankovskaya IM, Nosar VI, Nazarenko AI. The effect of interval hypoxic training on the rates of adaptation of rats to stress hypoxia. Fiziol Zh. 2004;50(6):32-42. [Ukrainian].
  65. Abe H, Semba H, Takeda N. the roles of hypoxia signaling in the pathogenesis of cardiovascular diseases. J Atheroscler Thromb. 2017;24(9):884-94. CrossRef PubMed PubMedCentral
  66. Poluektov YM, Petrushanko IY, Undrovinas NA, Lakunina VA, Khapchaev AY, Kapelko VI, et al. Glutathionerelated substances maintain cardiomyocyte contractile function in hypoxic conditions. Sci Rep. 2019;9(1):4872. CrossRef PubMed PubMedCentral
  67. Gatrell LA, Farhat E, Pyle WG, Gillis TE. Contractile function of the excised hagfish heart during anoxia exposure. J Comp Physiol B. 2019;189(2):199-211. CrossRef PubMed
  68. Hargreaves M, Spriet LL. Exercise metabolism: Fuels for the fire. Cold Spring Harb Perspect Med. 2018; 8(8):a029744. CrossRef PubMed PubMedCentral
  69. Gunina LM. Influence of succinic acid and its derivatives on the physical performance of athletes. Dop NANU. 2013;(3):180-4. [Ukrainian].
  70. Philpott JD, Witard OC, Galloway SDR. Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance. Res Sports Med. 2019;27(2):219-37. CrossRef PubMed
  71. Slater GJ, Sygo J, Jorgensen M. SPRINTING. Dietary approaches to optimize training adaptation and performance. Int J Sport Nutr Exerc Metab. 2019; 29(2):85-94. CrossRef PubMed
  72. Belenichev IF, Gorbacheva SV, Demchenko AV, Bukhtiyarova NV. The thiol-disulfide balance and the nitric oxide system in the brain tissue of rats subjected to experimental acute impairment of cerebral blood flow: The therapeutic effects of nootropic drugs. Neurochem J. 2014;8:24-7. CrossRef
  73. Velenichev IF, Kolesnik YM, Pavlov SV, Sokolik EP, Bukhtiyarova NV. Malate-aspartate shunt in neuronal adaptation to ischemic conditions: Molecular-biochemical mechanisms of activation and regulation. Neurochem J. 2012;6:22-8. CrossRef
  74. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006;70(5):1469-80. CrossRef PubMed
  75. Fong GH. Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis. 2008;11(2):121-40. CrossRef PubMed
  76. Korbecki J, Simińska D, Gąssowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: A review of the molecular mechanisms. Int J Mol Sci. 2021;22(19):10701. CrossRef PubMed PubMedCentral
  77. Yao G, Zhang Q, Doeppner TR, Niu F, Li Q, Yang Y, Kuckelkorn U, Hagemann N, Li W, Hermann DM, Dai Y, Zhou W, Jin F. LDL suppresses angiogenesis through disruption of the HIF pathway via NF-κB inhibition which is reversed by the proteasome inhibitor BSc2118. Oncotarget. 2015;6(30):30251-62. CrossRef PubMed PubMedCentral
  78. Weinstein PR, Hong S, Sharp FR. Stroke. Molecular identification of the ischemic penumbra. 2004;35(11 Suppl 1):2666-70. CrossRef PubMed
  79. Date T, Mochizuki S, Belanger AJ, Yamakawa M, Luo Z, Vincent KA, Cheng SH, Gregory RJ, Jiang C. Expression of constitutively stable hybrid hypoxia-inducible factor1alpha protects cultured rat cardiomyocytes against simulated ischemia-reperfusion injury. Am J Physiol Cell Physiol. 2005;288(2):C314-20. CrossRef PubMed
  80. Agrawal M, Kumar V, Singh AK, Kashyap MP, Khanna VK, Siddiqui MA, Pant AB. Trans-resveratrol protects ischemic PC12 cells by inhibiting the hypoxia associated transcription factors and increasing the levels of antioxidant defense enzymes. ACS Chem Neurosci. 2013;4(2):285-94. CrossRef PubMed PubMedCentral
  81. Belenichev IF, Kolesnik YM, Pavlov SV, Sokolik EP, Bukhtiyarova NV. Disturbance of HSP70 chaperone activity is a possible mechanism of mitochondrial dysfunction. Neurochem J. 2011;5:251-6. CrossRef
  82. Belenichev IF, Mazur IA, Kucherenko LI, Nagornaya EA, Gorbacheva SV, Bidnenko AS. The molecular and ultrastructural aspects of the formation of mitochondrial dysfunction in the modeling of chronic cerebral ischemia: The mitoprotective effects of angiolin. Neurochem J. 2016;10:131-6. CrossRef
  83. Belenichev IF, Egorov AA. Synergism of the pharmacological effect of glycine and thiotriazoline. Pathology. 2021;18(1/51):23-32. CrossRef

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.