Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2021; 67(1): 29-36


EFFECT OF BODY VIBRATION ON STRUCTURAL ORGANISATION OF TIBIA NANOCOMPOSITES IN RATS WITH GLUCOCORTICOID-INDUCED OSTEOPOROSIS

N.M. Kostyshyn1, M.R. Gzhegotskyi1, L.P. Kostyshyn1, Yu.O. Kulyk2

  1. Danylo Halytsky Lviv National Medical University, Ukraine
  2. Ivan Franko National University, Lviv, Ukraine
DOI: https://doi.org/10.15407/fz67.01.029


Abstract

The aim of the study was to evaluate the effect of nonphysiological whole body vibration (0,3g) on the bone structure and metabolism in rats treated with methylprednisolone (3 mg/ kg/day every other day, 24 weeks). Amount of crystalline component and collagen in the bones was determined by X-ray diffraction method, and the level of calcium by atomic adsorption spectroscopy. Bone metabolism was assessed by determining the concentration of markers - osteocalcinandtartrate-resistant acid phosphatase 5b. Methylprednisolone reduced the content of the mineral component in the tibia (–16.8%) in I group compared with the control. This significantly accelerated the process of bone metabolism, as evidenced by the increased level of bone remodeling markers. It should be noted that the total nonphysiological whole body vibration did not allow a decrease in the mineral component of the bone until 16 weeks of the experiment compared with I group, although these values were lower than the control group (–28.3%). We suggests that mechanical high-frequency low-intensity whole body vibration can inhibit the negative effects of glucocorticoids on bone structure.

Keywords: glucocorticoids; whole body vibration; remodeling; bone mineral density; osteoporosis; bone nanocomposites; X-ray diffraction

References

  1. Lin S, Huang J, Zheng L, Liu Y, Liu G, Li N, Wang K, Zou L, Wu T, Quin L, Cui L, Li G. Glucocorticoidinduced osteoporosis in growing rats. Calcif Tissue Int. 2014;95(4):362-73. CrossRef PubMed
  2. Musumeci G, Loreto C, Leonardi R, Castorina S, Giunta S, Carnazza M, Trovaro FM, Pichler K, Weinberg AM. The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J Bone Miner Metab. 2013; 31(3): 274-84. CrossRef PubMed
  3. Golovach IY. Clinical Hospital «Feofaniya» of State Administration of Affairs, Kyiv, Ukraine GlucocorticoidInduced Osteoporosis: Generation of Doctrine in Ukraine and Current State of Problem. Pain, Joints, Spine. 2011;3: 47-53.
  4. Pichler K, Loreto C, Leonardi R, Reuber T, Weinber AM, Musumeci G. RANKL is down regulated in bone cells by physical activity (treadmill and vibration stimulation training) in rat with glucocorticoid-induced osteoporosis. 2013;28:1185-96.
  5. Nakajima K, MatsunagaS, Morioka T, Nakano T, Abe S, Furuya Y, Yajima Y. Effects of unloading by tail suspension on biological apatite crystallite alignment in mouse femur. Dental Materials J. 2020;2019-187. CrossRef PubMed
  6. Shiau HJ, Aichelmann‐Reidy ME, Reynolds MA. Influence of sex steroids on inflammation and bone metabolism. Period Ontology. 2000.2014;64(1): 81-94. CrossRef PubMed
  7. Khosla S, Monroe DG. Regulation of bone metabolism by sex steroids. Cold Spring Harb Perspect Med. 2018;8(1): a031211. CrossRef PubMed PubMedCentral
  8. Vandewalle S, TaesY, Fiers T, Toye K, Van Caenegem E, Roggen I, De Schepper J, Kaufman JM. Associations of sex steroids with bone maturation, bone mineral density, bone geometry, and body composition: a cross-sectional study in healthy male adolescents. J Clin Endocrinol Metab. 2014;99(7):e1272-82. CrossRef PubMed
  9. Pang MY, Lau RW, Yip SP. The effects of whole-body vibration therapy on bone turnover, muscle strength, motor function, and spasticity in chronic stroke: a randomized controlled trial. Eur J Phys Rehabil Med. 2013;49(4):439-50.
  10. McGee-Lawrence ME, Wenger KH, Misra S, Davis CL, Pollock NK, Elsalanty M, Ding K, Isales CM, Hamrick MW, Wosiski-Kuhn M, Arounleut P, Mattson MP, Cutler RG, Yu JC, Stranahan AM. Whole-body vibration mimics the metabolic effects of exercise in male leptin receptordeficient mice. Endocrinology. 2017;158(5):1160-71. CrossRef PubMed PubMedCentral
  11. Minematsu A, Nishii Y, Imagita H, Sakata S. Whole body vibration at low-frequency can increase trabecular thickness and width in adult rats. J Musculoskelet Neuronal Interact. 2019;19(2):169.
  12. Cahalan SM, Lukacs V, Ranade SS, Chien S, Bandell M, Patapoutian A. Piezo1 links mechanical forces to red blood cell volume. Elife. 2015;4:e07370. CrossRef PubMed PubMedCentral
  13. Choi D, Park E, Jung E, Cha B, Lee S, Yu J, Cho CW.). Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance. JCI insight. 2019;4(5): e125068. CrossRef PubMed PubMedCentral
  14. Fotiou E, Martin-Almedina S, Simpson MA, Lin S, Gordon K, Brice G, Vogt J. Novel mutations in Piezo1 cause an autosomal recessive generalized lymphatic dysplasia with non-immune hydrops fetalis. Nat Commun. 2015;6:8085. CrossRef PubMed PubMedCentral
  15. Li X, Han L, Nookaew I, Mannen E, Silva MJ, Almeida M, Xiong J. Stimulation of Piezo1 by mechanical signals promotes bone anabolism. Elife. 2019;8: e49631. CrossRef PubMed PubMedCentral
  16. Huang CC, Tseng TL, Huang WC, Chung YH, Chuang HL, Wu JH. Whole-body vibration training effect on physical performance and obesity in mice. Int J Med Sci. 2014;11(12):1218. CrossRef PubMed PubMedCentral
  17. Kostyshyn N, Kulyk Y, Kostyshyn L, Gzhegotskyi M. Metabolic and structural response of bone to whole-body vibration in obesity and sedentary rat models for osteopenia. Rom J Diabetes Nutr Metab Dis. 2020;27(3):200-8.
  18. TadanoS, Giri B. X-ray diffraction as a promising tool to characterize bone nanocomposites. Sci Technol Adv Mater. 2012;12(6): e064708. CrossRef PubMed PubMedCentral
  19. Schuster L, Ardjomandi N, Munz M, Umrath F, Klein C, Rupp F, Alexander D. Establishment of collagen: Hydroxyapatite/BMP-2 mimetic peptide composites. Materials. 2020;13(5):1203. CrossRef PubMed PubMedCentral
  20. Clark SM, Iball J. The X-ray crystal analysis of bone. Prog Biophys Biophys Chem: Prog Ser. 2016;7:226.
  21. Bunaciu AA, Udriştioiu EG, Aboul-Enein HY. X-ray diffraction: instrumentation and applications. Crit Rev Analyt Chem. 2015;45(4):289-99. CrossRef PubMed
  22. Hlaing TT, Compston JE. Biochemical markers of bone turnover-uses and limitations. Ann Clin Biochem. 2014;51(2):189-202. CrossRef PubMed
  23. Morris HA, Eastell R, Jorgensen NR. Clinical usefulness of bone turnover marker concentrations in osteoporosis.Clin Chim Acta. 2017;467:34-41. CrossRef PubMed
  24. Kostyshyn NM, Kostyshyn LP, Gzhegotskyi MR. Age and sex-related structural and functional changes of bone remodelling during simultate abdomen ct-scanning.Wiad Lek, 2020;73(1):91-4. CrossRef PubMed
  25. PigaG, Solinas G, Thompson TJU, Brunetti A, Malgosa A, Enzo S. Is X-ray diffraction able to distinguish between animal and human bones? J Archaeolog Sci. 2013;40(1):778-85. CrossRef

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.