Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2019; 65(6): 30-37


THE FUNCTIONING OF LARGE CONDUCTANCE CATIONIC CHANNELS IN THE NUCLEAR MEMBRANE OF CARDIOMYOCYTES AND CEREBELLAR PURKINJE NEURONS UNDER THE INFLUENCE OF NICOTINIC CHOLINORECEPTOR MODULATORS

A.B. Kotliarova, O.A. Kotyk, I.V. Yuryshynets, S.M. Marchenko

    O.O. Bogomolets Institute of Physiology, NAS of Ukraine
DOI: https://doi.org/10.15407/fz65.06.030


Abstract

Large conductance cationic channels (LCC-channels) are highly expressed in the nuclear envelope of neurons and cardiomyocytes. Using electrophysiological registration of ion currents through the inner nuclear membrane of cardiomyocytes and cerebellar Purkinje neurons, we have tested the effect of n-choline receptor modulators (activators and inhibitors) on LCC-channels. Among the substances tested, rocuronium- and pipecuronium-bromide and nicotine proved to be effective. The pharmacological sensitivity of LCC-channels in Purkinje neuron and cardiomyocyte nuclear membranes was almost identical, indicating existence of a single population of these channels in the tissues studied. At a concentration of 0.2 mM nicotine reduced in half the current through LCC-channels, while rocuronium- and pipecuroniumbromide at the same concentration inhibited these channels by 7 and 12 % respectively. Therefore, among the listed substances, only the effect of nicotine on LCC-channels was close to the effect of previously studied tubocurarine, that’s why tubocurarine and nicotine remain the most promising tools for further investigation of the physiological role of these channels.

Keywords: nuclear membrane, LCC-channels, n-cholinoreceptor inhibitors, agonists of n-cholinoreceptors, pipecuronium bromide, rocuronium bromide, hexamethonium, methyllycaconitine (MLA), α-conotoxin PeIA, PNU 282987, nicotine

References

  1. Mauger JP. Role of the nuclear envelope in calcium signalling. Biol Cell. 2012 Feb;104(2):70-83. CrossRef PubMed
  2.  
  3. Marchenko SM, Thomas RC. Nuclear Ca2+ signalling in cerebellar Purkinje neurons. Cerebellum. 2006 Mar;5(1):36-42. CrossRef PubMed
  4.  
  5. Marchenko SM, Yarotskyy VV, Kovalenko TN, Kostyuk PG, Thomas RC. Spontaneously active and InsP3- activated ion channels in cell nuclei from rat cerebellar Purkinje and granule neurones. J Physiol. 2005 Jun;565(3):897-910. CrossRef PubMed PubMedCentral
  6.  
  7. Matzke AJM, Weiger TM, Matzke M. Ion channels at the nucleus: electrophysiology meets the genome. Mol Plant. 2010 Jul;3(4):642-52. CrossRef PubMed PubMedCentral
  8.  
  9. Kotyk OA, Kotliarova AB, Polishchuk AO, Marchenko SM. Single-channel ion currents in the nuclear envelope of rat cardiomyocytes. Fiziol Zh. 2016;62(6):3-8. [Ukranian].
  10.  
  11. Lunko OV, Grushkovska IV, Lun'ko OO, Marchenko SM. Effect of tubocurarine on large-conductance cationic channels in the inner nuclear membrane of Purkinje neurons of the rat cerebellum. Neurophysiology. 2016 Oct;48(5):332-5. [Ukranian]. CrossRef  
  12. Kotyk OA, Kotlyarova AB, Pavlova NI, Marchenko SM. Effects of blockers of large-conductance cation channels of the nuclear membrane. Neurophysiology. 2017 Apr;49(2):151-3. [Ukranian]. CrossRef  
  13. Kotyk OA, Kotliarova AB, Marchenko SM. Optimization of the method of nucleiisolation for electrophysiological studies of ion channels in the nuclear membrane of the rat cardiomyocytes. Fiziol Zh. 2018;64(2):26-33. CrossRef  
  14. Skok VI. Nicotinic acetylcholine receptors in autonomic ganglia. Auton Neurosci. 2002 Apr;97(1):1-11. CrossRef  
  15. Kárpáti E, Bíró K. Pharmacologic effects of pipecuronium bromide (Arduan). Acta Pharm Hung. 1992 May; 62(3): 121-6. [Hungarian].
  16.  
  17. Bowman WC. Neuromuscular block. Br J Pharmacol. 2006 Jan; 147 (Suppl 1):277-86. CrossRef PubMed PubMedCentral
  18.  
  19. Wonnacott S. Nicotinic ACh receptors. Tocris Rev. 2014;1-32.
  20.  
  21. Absalom NL, Quek G, Lewis TM, Qudah T, Arenstorff I, Ambrus JI. Covalent trapping of methyllycaconitine at the α4-α4 interface of the α4β2 nicotinic acetylcholine receptor. J Biol Chem. 2013 Sep; 288(37):26521-32. CrossRef PubMed PubMedCentral
  22.  
  23. Daly NL, Callaghan B, Clark RJ, Nevin ST, Adams DJ, Craik DJ. Structure and activity of α-conotoxin PeIA at nicotinic acetylcholine receptor subtypes and GABABreceptor-coupled N-type calcium channels. J Biol Chem. 2011 Mar;286(12):10233-7. CrossRef PubMed PubMedCentral
  24.  
  25. Bürgi JJ, Awale M, Boss SD, Schaer T, Marger F, ViverosParedes JM et al. Discovery of potent positive allosteric modulators of the α3β2 nicotinic acetylcholine receptor Material nadiishov do redaktsii 12.09.2019 by a chemical space walk in ChEMBL. ACS Chem Neurosci. 2014 May;5(5):346-59. CrossRef PubMed PubMedCentral
  26.  
  27. Gergalova GL, Skok MV. Nicotine effects on mitochondria membrane potential: participation of nicotinic acetylcholine receptors. Ukr Biochem J. 2011;83(5):13-21. [Ukranian].
  28.  
  29. Skok M, Gergalova G, Lykhmus O, Kalashnyk O, Koval L, Uspenska K. Nicotinic acetylcholine receptors in mitochondria: subunit composition, function and signalling. Neurotransmitter. 2016;3(e1290):1-12.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.