Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2000; 46(3): 3-13


Disturbanceof Endothelium-Dependent Vascular Responses, Arginase and NO-Synthaseathways of L-arginine Metabolism at Spontaneously Hypertensive Rats

Sagach V. F., Bazilyuk O. V., Kotsyuruba A. V., Buchanevich A. M

    Bogomoletz Institute of physiology NAS of Ukraine, Kyiv; Institute of microbiology and virusology NAS of Ukraine, Kyiv; LCL «Diaprof»



Abstract

In normotensive rats (NTR) and spontaneously hypertensive rats (SHR) with high (subgroup 1) and low (subgroup 2) level of the systemic arterial presure (SAP) we studied an activity of arginase and nitric oxide synthase (NOS) in different tissues, and the content of their metabolites: urea and nitrit anion (NO2 -). In isolated preparations of a thoracic aorta we recorded endothelium-dependent (ED) dilator reactions on acetylcholine (Ach). It has been found that in heart, aorta, plasma and erythrocytes of rats (subgroup 2) both the activity of arginase and content of urea increase remarkably. In heart, the activity of arginase reaches 27,96 ± 5,92 nmol ? min-1 ? mg-1 of protein, in aorta 4,74 ± 0,99 nmol ? min?1 ? mg?1 of protein (as compared with NTR 1,32 ± 0,12 nmol ? min-1 ? mg-1 of protein and 1,12 ± 0,07 nmol ? min?1 ? mg?1 of protein, accordingly). Content of urea in heart reaches 679,5 ± 121,19 nmol ? mg?1 of protein, in aorta 350,6 ± 63,6 nmol ? mg-1 of protein (in NTR it was 36,8 ± 5,3 nmol ? mg-1 of protein and 43,02 ± ± 9,55 nmol ? min-1 ? mg-1 of protein, accordingly). It was followed with a decrease in the NOS activity and heterogenous changes in NO2 ? content in the tissues under exploration. For example, the activity of NOS in heart and aorta decreased to 0,018 ± 0,005 nmol ? min-1? mg-1 of protein, in aorta 0,183 ± 0,037 nmol ? min-1? mg-1 of protein, accordingly, as compared to 0,093±0,014 nmol ? min-1 ? mg-1 of protein and 0,41±0,07 nmol ? min-1 ? mg-1 of protein in NTR. Content of NO2 ? in aorta decreased by 0,79 ± 0,06 nmol ? mg-1of protein, but in heart it increased to 0,63 ± ± 0,13 nmol ? mg-1 of protein, (in NTR it was 2,15 ± 0,18 nmol ? mg-1of protein and 0264 ± 0,04 nmol ? min-1 ? mg-1of protein, accordingly). In rats, subgroup 2, ED dilator responses of the smooth muscle (SM) of the thoracic aorta were inhibited by Ach (10?6 mol). Their amplitude reduced by almost twice, and a latency for their response became 4 times as much. All the changes in the biochemical parametres in heart, aorta, plasma and erythrocytes, and changes in contractile activity of vascular SM proved to be also characteristic for rats in subgroup 1, but they were less expreassed quantitatively. Thus, for the first time we have studied an activity of two alternative pathways for the metabolism of L-arginine on the model of arterial hypertension. The data obtained evidence that at hypertension non-oxidative (arginase) pathway of L-arginine metabolism is activated, while the oxidative pathway (NOS) is inhibited. Changes in the balance between them are followed with an essential inhibition of ED vasodilator responses. All this give us the prove to think of the origin for the arterial pressure increase to be both genetically and quantitatively determined damages in the biochemical homeostasis and dependent on it endothelial regulation of vascular tone.

References

  1. Базилюк О. В., Берштейн С. А. Модулирование эндотелием реакций гладкиx мышц артерий на биологические амины // Физиол. журн. им. И. М. Сечено-ва.— 1989. — 75, №6. — С. 819-823.
  2. Базілюк О. В., Коцюруба А. В. Нові механізми порушення ендотеліальної регу-ляції судинного тонусу при гіпертензії // Фізіол. журн. — 1998. — 44, №3. —С. 95.
  3. Кения М. В., Лукаш А. И., Гуськов Е. П. Роль низкомолекулярных антиоксидан-тов при окислительном стрессе // Успехи. соврем. биологии. —1993. — 113,№4. — С.456-470.
  4. Колб В. Г., Камышников В. С. Определение мочевины в сыворотке крови и мочепо цветной реакции с диацетилмонооксимом. — В кн.: Клиническая биохимия.—Минск: Беларусь, 1976. — С. 41-43.
  5. Кричевская А. А., Лукаш А. И., Шугалей В. С., Бондаренко Т. И. Аминокислоты,их производные и регуляция метаболизма. — Ростов.: Изд-во Ростов. ун-та. —1983. — 111 с.
  6. Сагач В. Ф., Базилюк О. В., Коцюруба А. В. Дисфункция эндотелия как след-ствие изменения его ферментативной активности при артериальной гипертензии.—В кн.: Роль монооксида азота в процессах жизнедеятельности.- Минск: Бела-русь, 1998. — С. 144-146.
  7. Сагач В. Ф., Ткаченко М. М., Шаповал М. В. Залежність довжина-сила судин-них гладеньких м’язів та система оксиду азоту за умов хронічного дефіциту ме-зостріатного дофаміну // Фізіол. журн. — 1999. — 45, №6. — С. 3-11.
  8. Стокле Ж. К., Мюлле Б., Андрианцитохайна Р., Клещев А. Гиперпродукцияоксида азота в патофизиологии кровеносных сосудов // Биохимия. — 1998. —63, №7. — С.976-983.
  9. 9. Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiringensyme // Proc. Nat. Acad. Sci. USA. — 1990. — 87, №2. — P.682-685.
  10. 10. Bцger R., Bode-Bцger S., Szuba A. et al. Asymmetric dimethylarginine (ADMA):a novel risk factor for endothelial dysfunction // Circulation. — 1998. — 98,№18. — P1842-1847.
  11. Boutard V., Havouis R., Fouqueray B. et al. Transforming growth factor-? stimulatesarginase activity in macrophages // J. Immunol. — 1995. — 155, №4. — P.2077-2084.
  12. Chen L. Y., Mehta J. L. Evidence for the presence of L-arginine-nitric oxide pathwayin human red blood cells: relevance in the effects of red blood cells on plateletfunction // J. Cardiovasc.Pharmacol. — 1998. — 32, №1. — P.57-61.
  13. Feron O., Saldana F., Michel J. B., Michel T. The endothelial nitric-oxide synthase-caveolin regulatory cycle // J. Biol. Chem. — 1998. — 273, №6. — P.3125-3128.
  14. Garganta C. L., Bond J. S. Assay and kinetics of arginase // Anal. Biochem. —1982. — 126, №1. — P.131-138.
  15. Green L. C., David A. W., Glogovski J. Analysis of nitrate, №itrite and [15N]nitrate in biological fluids // Anal. Biochem. — 1982. — 126, №1. — P.131-138.
  16. Ignaro L. J. Biological action and properties of endothelium-derived nitric oxideformed and released from artery and vein // Circulat. Res. — 1989. — 65. — P. 1-21.
  17. Junguero D. C., Shini V. B., Scott-Burden J., Vanhoutte P. M. TGF-b1 inhibitsL-arginine-derived relaxing factor(s) from SMC // Amer. J. Phisiol. — 1992. —262. — H1788.
  18. Kalliovalkama J., Jolma P., Tolvanen J. P. et al. Arterial function in nitric oxide-deficient hypertension: influence of long-term angiotensin II receptor antagonism //J. Hypertension. — 1999. — 34, №4, Pt.1. — P.552-557.
  19. 19. Lim J., Gasson C., Kaji D. M. Urea inhibits NaK2Cl cotransport in humanerythrocytes // J. Clin. Invest. — 1995. — 96. — P.2126-2132.
  20. 20. Luscher T.F., Dohi Y. Endothelium-derived relaxing factor and endothelin inhypertension // News in Physiol. Sciences (NIPS). — 1992. — 7. — P. 120-123.
  21. Luscher R. F., Vanhoutte P. M. Endothelium-dependent contraction to acetylcholinein the aorta of spontaneously hypertensive rats // J. Hypertension. — 1986. —8.— P.344-348.
  22. McHugh J., Cheek D. J. Nitric oxide and regulation of vascular tone: pharmacologicaland physiological consideration // Amer. J. Crit. Care. — 1998. — 7. — P.131-140.
  23. Moncada S., Palmer R. M .J., Higgs E. A. Nitric Oxide: Physiology, pathophysiologyand pharmacology // Pharmacol. Rev. — 1991. — 43, №2. — P. 109-142.
  24. Pollock D. M., Keith T. L., Highsmith R. F. Endothelium receptors and calcium
  25. signals // FASEB J. — 1995. — 9. — P.1176-1204.
  26. Prabhakar S. S., Zeballos G. A., Montoya-Zavala M., Leonard C. Urea ihibitsinducible nitric oxide synthase in macrophage cell line // Amer. J. Physiol. —1997. — 273, №6. — P. 1882-1888.
  27. Rajagopalan K. V., Fridovich I., Handler P. Competitive inhibition of enzymicactivity by urea // J. Biol. Chem. — 1963. — 236. — P.1059-1065.
  28. Rodriguez S., Richert L., Berthelot A. Increased arginase activity in aorta ofmineralocorticoid-salt hypertensive rats // Clin. Exp. Hypertens. — 2000. — 22,№1. — P.75-85.
  29. Sprague R. S., Ellsworth A. H., Lonigro A. J. ATP: the red clood cell link to NOand local control of the pulmonary circulation // Amer. J. Physiol. — 1996. —
  30. 271. — H2717-H2722.
  31. 29. Srivastava P., Hegde L. G., Patnaik G. K., Dikshit M. Role of endothelial-derived reactive oxygen species and nitric oxide in norepinephrine-induced rat aorticring contractions // Pharmacol. Rev. — 1998. — 38, №4. — P. 265-274.
  32. 30. Soloviev A. I., Bershtein S. A. The contractile apparatus in vascular smooth musclecells of spontaneously hypertensive rats posses increased calcium sensitivity: thepossible role of protein kinase C // J. Hypertension. — 1992. — 10. — P.131-136.
  33. Soloviev A. I., Stefanov A. V., Bazilyuk O. V., Sagach V. F. Phospholipid vesicies(liposomes) restore endothelium-dependent cholinergic relaxation in thoracic aortafrom spontaneously hypertensive rats // Ibid. — 1993. — 11. — P.623-627.
  34. Takata J., Koga T., Kobayashi K. et al. Decrease in endothelium-dependenthypotension in spontaneously hypertensive rats // Jap. Circulat. J. — 1990. —54. — P. 183-191.
  35. Winquist R. J., Bunting P. B., Baskin E. P., Wallace A. A. Decreased endothelium-dependent relaxation New Zealand genetic hypertensive rats // J. Hypertension.—1984. — 2. — P. 541-545.
  36. Zhang Z., Cohen D. M. Urea activates ribosomal S6 kinase (RSK) in a MEK-dependent fashion in renal m1MCD3 cells // Amer.J.Physiol. — 1998. — 274,№1. — F73-F78.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.