THE EVOKED ACTIVITY OF THE DORSAL ROOT AFFERENT FIBRES OF THE SPINAL CORD OF WHITE RATS IN EXPERIMENTAL DIABETES MELLITUS
A.G. Rodinsky, E.G. Zinov’eva, А.S. Trushenko, M.J. Kachan
SE «Dnipropetrovsk medical academy of Health Ministry of
Ukraine»
DOI: https://doi.org/10.15407/fz61.01.072
Abstract
We analyzed the functional status of the dorsal root of spinal
cord in experimental diabetes mellitus (DM), for instance the
parameters of the action potential (AP): threshold, chronaxy
and the dynamics of the dorsal root excitability. It was revealed
the 1,5 times increase in threshold of excitation when compared
to the control animals (P<0,001), the amplitude of AP
decreased by 21,7 % (P<0,05). It was also revealed a significant
increase in response to the 2nd stimulus under applying the
paired stimuli on the sciatic nerve in animals with experimental
DM. Under applying the stimuli of increasing intensity there
was found significant decrease in the amplitude of the AP
in animals of the experimental group. It was concluded that
hyperglycemia made changes to the processes of excitability
and refractoriness in the afferent fibers of the spinal cord.
Keywords:
diabetes mellitus, diabetic neuropathy, dorsal root of the spinal cord.
References
- Fahim MA, Hasan MY, Alshuaib WB. Early morphological remodeling of neuromuscular junction in a murine model of diabetes. J Appl Physiol 2000;89(6):2235-40.
- Matsuka Y, Spigelman I. Hyperosmolar solutions selectively block action potentials in rat myelinated sensory fibers: implications for diabetic neuropathy. J Neurophysiol. 2004;91(1):48-56.
CrossRef
PubMed
- Spruce MC, Potter J, Coppini DV. The pathogenesis and management of painful diabetic neuropathy: a review. Diabet Med. 2003;20(2):88-98.
CrossRef
PubMed
- Voitenko NV, Kruglikov IA, Kostyuk EP, Kostyuk PG. Effect of streptozotocin-induced diabetes on the activity of calcium channels in rat dorsal horn neurons. Neuroscience. 2000;95(2):519-24.
CrossRef
- Khan GM, Li DP, Chen SR, Pan HL. Role of Spinal Nitric Oxide in the Inhibitory Effect of [D-Pen2, DPen5]-Enkephalin on Ascending Dorsal Horn Neurons in Normal and Diabetic Rats. J Pharmacol and Experim Therap. 2002;303(3):1021-8.
CrossRef
PubMed
- Rodyns'kyj OG, Zinov'jeva OG, Mozgunov OV, Trushenko OS. Activity of the interneuron pools of the spinal cord in experimental diabetes mellitus. Fiziol Zh. 2013;59(5):50-5. [Ukrainian].
- Devor M. Sodium channels and mechanisms of neuropathic pain. J Pain. 2006;7(1):3-12.
CrossRef
PubMed
- D'Mello R, Dickenson AH. Spinal cord mechanisms of pain. Br J Anaesth. 2008;101(1):8-16.
CrossRef
PubMed
- Makij EA, Nerush PA,Rodinskij AG, Mjakushko VA. Evoked activity of the afferent and efferent fibers of the rat sciatic nerve in experimental hyperthyroidism. Neurophysiology. 2002;34(1):51-9. [Russian].
- Kalinin AP, Rudakova IG, Kotov SV. [Diabetic neuropathy]. Al'manah klinicheskoj mediciny. 2001;4:95-107. [Russian].
- Cameron NE The aetiology of neuropathy in experimental diabetes. Br J Diab and Vascular Disease. 2003;3(2):98-
CrossRef
- Goh SY, Cooper ME. The Role of Advanced Glycation End Products in Progression and Complications of Diabetes. J Clin Endocrinol Metab. 2008;93(4):1143-52.
CrossRef
PubMed
- Sivous G. Clinical characteristics of diabetic peripheral polyneuropathy in children and adolescents. Vrach. 2004;2:43-5. [Russian].
- Rodyns'kyj OG, Zіnov'eva OG, Mozgunov OV. Electrophysiological analysis of the excitability of the neuromuscular unit in experimental diabetes mellitus. Eksperym ta klin fiziol and biohim. 2012;59(3):7-12. [Ukrainian].
- Vague P, Coste TC, Jannot MF, Raccah D, Tsimaratos M. C-peptide, Na+,K+-ATPase, and diabetes. Experime Diab Res. 2004;5(1):37-50.
CrossRef
PubMed PubMedCentral
- Shmigol' AV, Kostjuk EP. Mechanisms of formation of the calcium signals in primary sensory neurons of mice and their violations in experimental diabetes mellitus. Neurophysiology. 1995;27(5/6):331-41. [Russian].
- Messinger RB, Naik AK, Jagodic MM, Nelson MT, Lee WY, Choe WJ, et al. In-vivo silencing of the Cav3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain. 2009;145(1-2):184–95.
- Chattopadhyay M, Mata M, Fink DJ. Continuous δ-Opioid Receptor Activation Reduces Neuronal Voltage-Gated SodiumChannel (NaV1.7) Levels through Activation of Protein Kinase C in Painful Diabetic Neuropathy. J Neurosci. 2008;28(26):6652–8.
CrossRef
PubMed PubMedCentral
- Hong S, Morrow TJ, Paulson PE, Isom LL, Wiley JW. Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J Biol Chem. – 2004. – 279, ; 28. – P. 29341-50.
|