Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2016; 62(2): 64-71


OMEGA-3 POLYUNSATURATED FATTY ACIDS NORMALIZE THE FUNCTION OF MITOCHONDRIA, ACTIVITY OF ENZYMES OF PROOXIDANT-ANTIOXIDANT SYSTEM AND THE EXPRESSION OF CYTOCHROME Р450 2Е1 AFTER ISOPROTERENOLINDUCED MYOCARDIAL INJURY

O.S. Panasiuk, A.M. Shysh, O.O. Moibenko

    O.O.Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kyiv
DOI: https://doi.org/10.15407/fz62.02.064


Abstract

We have studied the influence of dietary ω-3 polyunsaturated fatty acids (ω-3 PUFA) on the functioning of subsarcolemmal and interfibrillar mitochondrial fractions of rat myocardium, changes in expression of cytochrome P450 (CYP2E1) and the activity of enzymes of prooxidant-antioxidant system after isoproterenol-induced myocardial injury. It has been found that in vivo administration of ω-3 PUFA (Epadol 0.1 ml/100 gr of weight for 4 weeks) significantly reduced the swelling of subsarcolemmal and interfibrillar mitochondrial fractions by 65.52% 54.84% respectively, pointing for a decrease of damage of the mitochondrial function evoked by in vivo administration of isoproterenol. In vivo administration of ω-3 PUFAs prevents a decrease in the activity of antioxidant enzymes catalase and superoxide dismutase (2.65 and 7.1- fold, respectively) after isoproterenol-induced myocardial injury. We suggest that the development of oxidative stress after isoproterenol-induced myocardial injury can be caused by a significant increase in the expression of cytochrome P450 2E1 (73.3%), and administration of ω-3 PUFAs prevents such changes.

Keywords: mitochondria; subsarcolemmal; interfibrillar; isoproterenol; ω-3 polyunsatureted fatty acid; malondialdehyde; superoxide dismutase; catalase; cytochrome Р450 2Е1.

References

  1. Shimanskaia TV, Strutinskaia NA, Vavilova GL, Goshovskaia IuV, Semenikhina EN, Sagach VF. Cyclosporin A-sensitive mitochondrial pore as a target of cardioprotective action of hydrogen sulfide donor. Ros Fiziol Zh im I M Sechenova. 2013 Feb 99(2):261-72. [Russian].
  2.  
  3. Izem-Meziane M, Djerdjouri B, Rimbaud S, Caffin F, Fortin D, Garnier A, Veksler V, Joubert F, Ventura-Clapier R. Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin. Am J Physiol Heart Circ Physiol. 2012 302:665-74. CrossRef PubMed
  4.  
  5. Galindo MF, Jordán J, González-García C, Ce-a V. Reactive oxygen species induce swelling and cytochrome c release but not transmembrane depolarization in isolated rat brain mitochondria. Br J Pharmacol. 2003 139:797-804. CrossRef PubMed PubMedCentral
  6.  
  7. Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA. Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. Am J Physiol Cell Physiol. 2005 Oct;289(4):C994-C1001. CrossRef PubMed
  8.  
  9. Panasiuk O, Shysh A, Bondarenko A, Moibenko O. Omega-3 polyunsaturated fatty acid-enriched diet differentially protects two subpopulations of myocardial mitochondria against Ca2+-induced injury. Exp Clin Cardiol. 2013 18.-e60-e64.
  10.  
  11. Wieckowski MR, Wojtczak L. Fatty acid-induced uncoupling of oxidative phosphorylation is partly due to opening of the mitochondrial permeability transition pore. FEBS Lett. 1998 423:339-42. CrossRef  
  12. Palmer JW, Tandler B, Hoppel CL. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 1977 Dec 10;252(23):8731-9. PubMed
  13.  
  14. De Caterina R. n–3 Fatty Acids in Cardiovascular Disease. N. Engl. J. Med. 2011 364:39-50. CrossRef PubMed
  15.  
  16. Jump DB. N-3 polyunsaturated fatty acid regulation of hepatic gene transcription. Curr Opin Lipidol. 2008 Jun;19(3):242-7. CrossRef PubMed PubMedCentral
  17.  
  18. Zhukovs'ka AS, Shysh AM, Moĭbenko OO. Study of the impact of omega-3 PUFA on fatty acid composition of heart, respiration and swelling of mitochondria of the heart in diabetes. Fiziol Zh. 2012;58(2):16-26. [Ukrainian]. CrossRef PubMed
  19.  
  20. Cederbaum AI. Nrf2 and antioxidant defense against CYP2E1 toxicity. Subcell Biochem. 2013 67:105. CrossRef PubMed
  21.  
  22. Gonzalez FJ. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res. 2005 Jan 6;569(1-2):101-10. CrossRef PubMed
  23.  
  24. Laemmli, UK. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680. CrossRef PubMed
  25.  
  26. Stephanov OV. editor. Preclinical studies of drugs. Kyiv: Avicena: 2001.[Ukrainian]
  27.  
  28. Koroliuk M, Ivanova L, Maiorova I, Tokarev V. A method of determining catalase activity. Lab Delo. 1988;(1):16- 9. [Russian] PubMed
  29.  
  30. Arnold C, Konkel A, Fischer R, Schunck WH. Cytochrome P450-dependent metabolism of omega-6 and omega-3 long-chain polyunsaturated fatty acids. Pharmacol Rep. 2010 May-Jun;62(3):536-47. CrossRef  
  31. Chen Q, Lesnefsky EJ. Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med. 2006 Mar 15;40(6):976-82. CrossRef PubMed
  32.  
  33. Demaison L, Sergiel JP, Moreau D, Grynberg A. Influence of the phospholipid n-6/n-3 polyunsaturated fatty acid ratio on the mitochondrial oxidative metabolism before and after myocardial ischemia. Biochim Biophys Acta. 1994 Oct 21;1227(1-2):53-9. CrossRef  
  34. Chapkin RS, Hong MY, Fan YY, Davidson LA, Sanders LM, Henderson CE, Barhoumi R, Burghardt RC, Turner ND, Lupton JR. Dietary n-3 PUFA alter colonocyte mitochondrial membrane composition and function. Lipids. 2002 Feb;37(2):193-9. CrossRef PubMed
  35.  
  36. Pepe S, Tsuchiya N, Lakatta EG, Hansford RG. PUFA and aging modulate cardiac mitochondrial membrane lipid composition and Ca2+ activation of PDH. Am J Physiol. 1999 276. -P.149-58.
  37.  
  38. Takuwa Y, Takuwa N, Rasmussen H. The Effects of Isoproterenol on Intracellular Calcium Concentration. J Biol Chem. 1988 263:762-8. PubMed
  39.  
  40. Palmer JW, Tandler B, Hoppel CL. Heterogeneous response of subsarcolemmal heart mitochondria to calcium. Am J Physiol. 1986 May;250(5 Pt 2):H741-8. PubMed
  41.  
  42. Kusunoki C, Yang L, Yoshizaki T, Nakagawa F, Ishikado A, Kondo M, Morino K, Sekine O, Ugi S, Nishio Y, Kashiwagi A, Maegawa H. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2013 Jan 4;430(1):225-30. CrossRef PubMed
  43.  
  44. Shysh AM, Kukoba TV, Tumanovs'ka LV, Moĭbenko OO. Phospholipid membrane modification as a protection factor of the myocardium during stress injury. Fiziol Zh. 2005;51(2):17-23. [Ukrainian] CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.