Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2013; 59(1): 25-31


The role of aldehydes in development of oxidative stress under rhabdomyolysis in rats

Tokarchuk KO, Kapustianenko LH, Shandrenko SH

    Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz59.01.025

Abstract

We investigated the changes in the forms of plasma iron and participation of aldehydes in the development of oxidative stress under glycerol-induced rhabdomyolysis in rats. Rhabdomyolysis was caused by intramuscular injection of 50% glycerol in the dose 10 ml/kg. We detected an increase in indexes of oxidative stress. On the day 4, the content of TBA-reactive products in the liver increased by 38%, CO-group proteins in serum in 3,5 times and in the liver in 2,8 times. The content of aldehydes in the liver was increased in 2,9 times. Accumulation of not shielded redox-active iron in the blood plasma in concentrations up to 2,6 mg/l, which is almost three times of iron content of transferring was showed. The formation of this form of iron is one of the triggers of oxidative stress. To explore the participation of endogenous aldehydes in the development of oxidative stress in this model, in additional group of animals glycerol was injected simultaneously with a daily 1% solution of dimedone, aldehydes acceptor at a dose of 10 ml/kg. In this group, at 4th day a decrease in the content of aldehydes in the liver by 79% was recorded. Normalization of aldehydes followed by normalization of the indicators of oxidative stress: decrease the content of TBA-reactive products in the liver by 62%, CO-group proteins in serum by 38% in the liver by 46%. These results demonstrate that elevated level of aldehydes is not only a "product" of oxidative stress, but the aldehydes themselves are actively involved in the development of this process.

Keywords: oxidative stress, rhabdomyolysis, aldehydes,dimedone.

References

  1. Dmitrenko N.P., Holian A. Rol' vzaimodeistviya putei metabolizma formal'degida i oksida azota v mehanizme ih toksicheskogo deistviya. ??. Toksicheskoe deistvie oksida azota . Ukr. biohim. zhurn. 2005. 77, N 5. S. 5-26.
  2.  
  3. Prodanchuk G.N., Shandrenko S.G., Kishko T.O., Dmitrenko N.P. Novie aspekti mehanizma toksicheskogo deistviya gidroksilamina. Sovr. Probl. toksikologii. 2006. N 1. S. 37-46.
  4.  
  5. Shandrenko S.G., Kishko T.O., Chumachenko I.M., Dmitrenko M.P. Zmini v obmini oksidu azotu ta zaliza u shchuriv, sprichineni azbestom . Ukr.biohim. zhurn. 2011. 83, N 2. C. 93-100.
  6.  
  7. Andersen M.E., Clewell H.J., Bermudez E., Dodd D.E., Willson G.A., Campbell J.L., Thomas R.S. Formaldehyde: integrating dosimetry, cytotoxicity, and genomics to understand dose-dependent transitions for an endogenous compound . Toxicol. Sci. 2010. 118, N 2. P. 716-731. CrossRef PubMed
  8.  
  9. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-due binding . Anal.Biochem. 1976. 72. P. 248-254. CrossRef  
  10. Conaway C.C., Whysner J., Verna L.K., Williams G.M. Formaldehyde mechanistic data and risk assessment: endogenous protection from DNA adduct formation . Pharmacol. Ther. 1996. 71, N 1-2. P. 29-55. CrossRef  
  11. Deng Y., Yu P.H. Simultaneous determination of formaldehyde and methylglyoxal in urine: involvement of semicarbazide-sensitive amine oxidase-mediated deamination in diabetic complications . J. Chromatogr. Sci. 1999. 37, N 9. P. 317-322. CrossRef PubMed
  12.  
  13. Desai K.M., Chang T., Wang H., Banigesh A., Dhar A., Liu J., Untereiner A., Wu L. Oxidative stress and aging: Is methylglioxal the hidden enemy? . Can. J.Physiol. Pharmacol. 2010. 88. P. 273-284. CrossRef PubMed
  14.  
  15. Esterbauer H, Schaur R.J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes . Free Rad. Biol. Med. 1991. 11. P. 81-128.  CrossRef  
  16. Holt S., Moore K. Pathogenesis of renal failure in rhabdomyolysis: The role of myoglobin . Exp. Nephrol. 2000. 8. P. 72-76.  CrossRef PubMed
  17.  
  18. Huerta-Alardin A.L., Varon J., Marik P.E. Bench-tobedside review: Rhabdomyolysis an overview for clinicians . Crit. Care. 2005. 9. P. 158-169. CrossRef PubMed PubMedCentral
  19.  
  20. Janero D.R. Malondialdehyde and thiobarbituric acidreactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury . Free Rad. Biol. Med. 1990. 9, N 6. P. 515-540. CrossRef  
  21. Kitamoto Y., Maeda H. Reevaluation of the reaction of formaldehyde at low concentration with amino acids . J. Biochem. 1980. 87, N 5. P. 1519-1530. CrossRef PubMed
  22.  
  23. Lee C.H., Tsai C.M. QuantiYcation of bacterial lipopolysaccharides by the purpald asay: Measuring formaldehyde generated from 2-keto-3-deoxyoctonate and heptose at the inner core bt periodate oxidation. Anal. Biochemistry. 1999. 267. P. 161-168. CrossRef PubMed
  24.  
  25. Lui W., Kato M., Akhand A., Hayakawa A., Suzuki H., Miyata T., Kurokawa K., Hotta Y., Ishikawa N., Nakashima I. 4-hydroxynonenal induces a cellular redox status-related activation of the cascade for apoptotic cell death . J. Cell Sci. 2000. 11, N 3. P. 635-641.
  26.  
  27. Metz B., Kersten G.F., Hoogerhout P., Brugghe H.F., Timmermans H.A., de Jong A., Meiring H., ten Hove J., Hennink W.E., Crommelin D.J., Jiskoot W. IdentiYcation of formaldehyde-induced modifications in proteins: reactions with model peptides . J. Biol. Chem. 2004. 279, N 8. P. 6235-6243. CrossRef PubMed
  28.  
  29. Nath K.A., Haggard J.J., Croatt A.J. The indispensability of heme oxygenase-1 in protecting against acute heme protein-induced toxicity in vivo . Amer. J. Pathol. 2000. 156, N 5. P. 1527-1535. CrossRef  
  30. Negre-Salvayre A., Coatrieux C., Ingueneau C., Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors . Br. J. Pharmacol. 2008. 153, N 1. P. 6-20. CrossRef PubMed PubMedCentral
  31.  
  32. Paul J. Thornalley. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems role in ageing and disease . Drug Metab. Drug Interact. 2008. 23, N 1-2. P. 125-150. 
  33.  
  34. Plotnikov E.Y., Chupyrkina A.A., Pevzner I.B., Isaev N.K., Zorov D.B. Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney's mitochondria . Biochim Biophys. Acta. 2009. 1792, N 8. P. 796-803.  CrossRef PubMed
  35.  
  36. Sardana M.K., Sassa S., Kappas A. Hormonal regulation of heme oxygenase induction in avian hepatocyte culture . Biochem. Pharmacol. 1985. 34, N 16. R. 2937-2944.
  37.  
  38. Sauret J.M., Marinides G., Wang G.K. Rabdomyolysis . Amer. Fam. Physician. 2002. 65, N 5. R. 907-912.
  39.  
  40. Uchida K., Kanematsu M., Morimitsu Y., Osawa T., Noguchi N., Niki E. Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins . J. Biol. Chem. 1998. 273. P. 1605816066. CrossRef  
  41. Winterbourn C.C., Buss I.H. Protein carbonil measurement by enzyme-linked immunosorbent assay . Methods Enzymol. 1999. 300. P. 106-111. CrossRef  
  42. Zhu Q., Sun Z., Jiang Y., Chen F., Wang M. Acrolein scavengers: reactivity, mechanism and impact on health . Mol. Nutr. Food Res. 2011. 55, N 9. P. 1375-1390. CrossRef PubMed
  43.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.