Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2012; 58(6): 9-22


Participation of phosphatidylinositol-3`-kinase on signal transduction through galactosyl-containing glycoprotein receptors of segmentonuclear leukocytes under type 1 diabetes mellitus

N.O. Sybirna, І.V. Brodyak, M.L. Bars’ka,О.I. Vovk

    Ivan Franko National University of Lviv, Ukraine;Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine
DOI: https://doi.org/10.15407/fz58.06.009

Abstract

It is shown that reduction of b,D-galactosyl-containing carbohydrate determinants of glycoconjugates on the plasmatic membrane of segmentonuclear neutrophills of peripheral blood under type 1 diabetes mellitus (DM) is correlated with changes in aggregation of these cells and may cause their functional disorder. Changes in the parameters of ricin-induced neutrophil activation after inhibition of the phosphatidylinositol-3'-kinase (РІ-3’-kinase) enzyme with wortmannin indicated that the functional state of polymorphonuclear leukocytes is mediated by signaling pathways in which РІ-3’-kinase is involved. Thus, РІ-3’-kinase-dependent signal networks are involved in the processes of signal transduction through galactosyl-containing glycoprotein receptors into neutrophilic leukocytes. Inertness of the intensity formation in time of neutrophil granulocyte cell response on RCA-induced translocation of the p85a regulatory subunit of PI-3'-kinase from the cytosolic to the membrane fraction under type 1 DM is a consequence of changes in the number or structure of plasmatic galactosyl-containing glycoprotein receptors. The revealed changes may be etiologic premise of diabetic complications and chronic diseases that impair the functional condition of patients with type 1 DM. Key words: neutrophil granulocytes, b,D-galactosyl-containing carbohydrate determinants of glycoconjugates, РІ-3’-kinase, wortmannin, type 1 diabetes mellitus.

Keywords: neutrophil granulocytes, B,D-galactosyl-containingcarbohydrate determinants of glycoconjugates, РІ-3’-kinase,wortmannin, type 1 diabetes mellitus.

References

  1. Antonyuk V.O. Lektini ta ih sirovinni dzherela. L'viv: L'viv. nats. med. un-t im. Danila Galits'kogo, 2005. 554 s.
  2.  
  3. Brodyak I.V., Bars'ka M.L., Sibirna N.O. apoptoz imu-nokompetentnih klitin krovi pri tsukrovomu diabeti 1 tipu . Lab. diagnostika. 2005. N 2. S. 22-25.
  4.  
  5. Zdioruk M.I., Brodyak I.V., Sibirna N.O. Uchast' RI-3'-ki-naznogo signal'nogo shlyahu u viznachenni struktur­no-funktsional'nogo stanu membran leikotsitiv za umov tsukrovogo diabetu 1 tipu . Biol. studii. 2011. 5, N 1. S. 85-96.
  6.  
  7. Sibirna N.O., Zdioruk M.I., Brodyak I.V., Bars'ka M.L., Vovk O.I. aktivatsiya fosfatidilinozitol-3'-kinaznogo shlyahu lektinindukovanim signalom cherez sialovmisni glikoproteini membran leikotsitiv u zdorovih donoriv ta za umov tsukrovogo diabetu 1 tipu . Ukr. biohim. zhurn. 2011. 83, N 5. S. 22-31.
  8.  
  9. Alba-Loureiro T.C., Munhoz C.D., Martins J.O., Cere-hiaro G.A., Scavone C., Curi R. Neutrophil function and metabolism in individuals with diabetes mellitus . Brazil. J. Med. and Biol. Res. 2007. 40. P. 1037-1044.
  10.  
  11. Aleksandrovski Ya.a. Molecular mechanisms of the cross-impact of pathological processes in a combined diabetes and cancer condition. Research and clinical aspects . Biochemistry. 2002. 67, N 12. P. 1611-31.
  12.  
  13. Alon R., Ley K. Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells . Curr. Opin. Cell Biol. 2008. 20. P. 525-536. CrossRef PubMed
  14.  
  15. Alon R., Rosen S. Rolling on N-linked glycans: a new way to present L-selectin binding sites . Nat. Immunol. 2007. 8. P. 339-350. CrossRef PubMed
  16.  
  17. Anderson G. J., Roswit W.T., Holtzman M.J., Hogg J.C., Van Eeden S.F. Effect of mechanical deformation of neu-trophils on their CD18/ICAM-1-dependent adhesion . J. App. Physiol. 2001. 91. p. 1084-90. CrossRef PubMed
  18.  
  19. Avril T., Freeman S., Attrill H., Clarke R. G., Crocker P. R. Siglec-5 (CD170) can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation . J. Biol. Chem. 2005. 280. p. 19843-19851. CrossRef PubMed
  20.  
  21. Cabec V., Carreno S., Moisand A., Bordier C., Maridon-neau-Parini I. Complement receptor 3 (CD11b/CD18) mediates type I and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively . J. Immunol. 2002. 169, N 4. P. 2003-2009. CrossRef PubMed
  22.  
  23. Chang Y.C., Chan Y.H., Jackson D.G., Hsieh S.L. The glycosaminoglycan-binding domain of decoy receptor 3 is essential for induction of monocyte adhesion . Ibid. 2006. 176, N 1. P. 173-80. CrossRef  
  24. Crocker P.R. Siglecs in innate immunity . Curr. Opin. Pharmacol. 2005. 5. p. 431-437. CrossRef PubMed
  25.  
  26. Dodd R.B., Drickamer K. Lectin-like proteins in model organisms: Implications for evolution ofcarbohydrate-binding activity . Glycobiology. 2001. 11. P. 71R-79R. CrossRef PubMed
  27.  
  28. Fern?ndez-Rodr?guez J., Feijoo-Carnero C., Merino-Trigo A., P?ez de la Cadena M., Rodr?guez-Berrocal F. J., de Carlos A., Butr?n M., Mart?nez-Zorzano V.S. Immuno-histochemical analysis of sialic acid and fucose composition in human colorectal adenocarcinoma . Tumor Biol. 2000. 21, N 3. P. 153-164. PubMed
  29.  
  30. Fujita T., Matsushita M., Endo Y. The lectin-complement pathway its role in innate immunity and evolution . Immunol. Rev. 2004. 198. P.185-202. CrossRef PubMed
  31.  
  32. Fukuda M. Cell surface carbohydrates and cell development. Boca Raton, Florida: CRC Press, 1992. 329 r.
  33.  
  34. Graham S.A., Antonopoulos A., Hitchen P.G., Haslam S.M., Dell A., Drickamer K., Taylor M.E. Identifcation of neutrophil granule glycoproteins as lewisx-containing ligands cleared by the scavenger receptor C-type lectin . J. Biol. Chem. 2011. 286, N 27. P. 24336-24349. CrossRef PubMed PubMedCentral
  35.  
  36. Hossler P., Khattak S., Jian Li Z. Optimal and consistent protein glycosylation in mammalian cell culture . Glycobiology. 2009. 19. N 9. P. 936-949. CrossRef PubMed
  37.  
  38. Kaneider N.C., Leger A.J., Kuliopulos A. Therapeutic targeting of molecules involved in leukocyte-endothelial cell interactions . FEBS J. 2006. 273. p. 4416-4424. CrossRef PubMed
  39.  
  40. Kopff M., Zakrzewska I., Klem I. Acta Biochimica Polo-nica. 1997. 44, N 2. P. 359-362. PubMed
  41.  
  42. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 . Nature. 1970. 277. P. 680-685. CrossRef  
  43. Lutsik A. D., Detjuk E.S., Lutsik M.D. Lectins in Histochemistry. Lvov: Lvov Univ. Publish. House. 1989. 144 p.
  44.  
  45. Mantovani A., Bussolino F., Introna M. Cytokine regulation of endothelial cell function: from molecular level to the bedside . Immunol. Today. 1997. N 18. P. 231-240. CrossRef  
  46. Okada T., Sakuma L., Fukui Y., Hazeki O. Ui M. Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selectiveinhibition of phosphatidylinositol 3-kinase . J. Biol. Chem. 1994. N 269. p. 3563-3567. PubMed
  47.  
  48. Pan-Jun Kim, Dong-Yup Lee, Hawoong Jeong. Centralized modularity of N-linked glycosylation pathways in mammalian cells . PLoS ONE. 2009. 4, N 10. P. e7317. CrossRef PubMed PubMedCentral
  49.  
  50. Piccardoni P., Sideri R., Manarini S., Piccoli A., Martelli N., Gaetano G., Cerletti C., Evangelista V. Platelet/poly-morphonuclear leukocyte adhesion: a new role for SRC kinases in Mac-1 adhesive function triggered by P-selectin . Blood. 2001. 98, N 1. p. 108-116. CrossRef PubMed
  51.  
  52. Rudiger H., Gabius H.J. Plant lectins: Occurrence, biochemistry, functions and applications . Glycoconj J. 2001. 18. P. 589-613. CrossRef PubMed
  53.  
  54. Sharon N., Lis H. History of lectins: From hemagglutinins to biological recognition molecules . Glycobiology. 2004. 14. P. 53R-62R. CrossRef PubMed
  55.  
  56. Sybirna N., Barska M., Brodyak I., Vovk O., Drobot L. Study of carbohydrate determinants of leucocyte glycopro-tein receptors in patients with type 1 diabetes mellitus . Ann. Univer. Mariae Curie-Sklodovska. Lublin (Poland). 2006. 19, N 1 (46). P. 215-218.
  57.  
  58. Sybirna N., Brodyak I., Zdioruk M., Barska M. Sialic acid-containing glycoproteins are the marker molecules that determine the leukocyte functional state under diabetes mellitus . Sepsis. 2011. 4, N 1. P. 47-55.
  59.  
  60. Weichhart T., Saemann M.D. The PI3K/Akt/mTOR pathway in innate immune cells: emerging therapeutic applications . Ann. Rheum. Dis. 2008. 67, Suppl III. P. 70-74. CrossRef PubMed
  61.  
  62. Wengui Yu., Cassara J., Weller P.F. Phosphatidylinositide 3-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells . Blood. 2000. 95, N 3. P. 1078-1085. PubMed
  63.  
  64. William A. Muller. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the infammatory response . TRENDS in Immunol. 2003. 24, N 6. p. 326-333. CrossRef  
  65. Yarema K. J., Bertozzi K. R. Characterizing glycosylation pathways . Genome Biol 2011. 2, N 5. p. 0004.1- 0004.10.
  66.  
  67. Zarbock A., Ley K. Mechanisms and consequences of neutrophil interaction with the endothelium . Amer. J. Pathol. 2008. 172. P. 10-21. CrossRef PubMed PubMedCentral
  68.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.