Food-procuring stereotype movements is accompanied by changes of c-Fos gene expression in the amygdala and modulation of heart rate in rats
Dovgan' OV, Vlasenko OV, Buzyka TV, Maĭs'kyĭ VO, Piliavs'kyĭ OI, Maznychenko AV.
- M.I. Pirogov National Medical University, Vinnitsa, Ukraine
- I.I. Mechnikov National University, Odessa, Ukraine
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz58.05.044
Abstract
The distribution of Fos-immunoreactive (Fos-ir) and NADPH-diapporase reactive (NADPH-dr-) neurons in the different subnuclei of amygdala and insular cortex (on the level -2,12 to -3,14 mm from bregma), and the associated changes of heart rate (HR) in intact, food-deprivated and executed food-procuring movements of rats were studied. In comparison with other groups of animals, the mean number of the Fos-ir neurons in the central nucleus of amygdala (Ce) and the insular cortex (GI/DI) at all studied levels was signifcantly greater in the executed food-procuring movements in rats. The main focus of localization of the Fos-ir neurons was found in lateral part of the Ce (58,5 ± 1,9 units in 40-mm-thick section) at the level -2,56 mm. The mean number of Fos-ir neurons was signifcantly greater also in the lateral and capsular parts of the Ce. The mean number of Fos-ir neurons in the GI/DI was 165,5 ± 3,2 cells in section. The number and density of NADPH-d reactive neurons was not signifcantly different in the brain structures of all animal groups studied. The double stained neurons (Fos-ir + NADPH-dr) were registered in medial, basolateral, anterior cortical amygdaloid nuclei and sub-stantia innominata (SI) in rats after realization food-procuring movements. It was found that realization of food-procuring movements by the forelimb during repeated sessions was accompanied with the gradual decline of mean values of the HR (from 5% to 12% of control level) with subsequent renewal of them to the initial values (tonic component). The analysis of dynamics of the HR changes during realization of separate purposeful motion has shown the transient period of the HR suppression (500 ms), which coincided with the terminal phase of grasping of food pellet (phasic component). We suggest that the revealed focuses of localization of Fos-ir neurons in the lateral and medial subregions of amigdaloid Ce and also GI/ DI, and SI testifed that these structures of brain are involved in generation of the goal-directed motions. Direct projections of these subnuclei (and hypothalamus) to the cardiovascular centers of the medulla determine the associated regulation of the cardiovascular system function in the period of realization of the goal-directed motions in animals.
Keywords:
operant reflex, c-fos expression, NADPH-d reactivity,amygdala, insular cortex, rat.
References
- Dovgan AV, Vlasenko OV, Maznichenko AV, Pilyavsky AI, Maysky VA Operant reflexes and c-fos gene expression in the nuclei of the amygdala and the insular cortex of rats . Neurophysiology . Neurophysiology. 2011. 43, N 3. P. 277-280.
CrossRef
- Dovgan OV, Vlasenko OV, Maysky VA, Pilyavsky OI, Maznichenko AV Topography of Phos immunoreactive and NADPH-d-reactive neurons in the limbic structures of the forebrain and hypothalamus in the implementation of motivated stereotyped movements in rats . Neurophysiology . Neurophysiology 2009. 41, No. 1. P. 32-40.
CrossRef
- Vlasenko OV, Buzyka TV, Maysky VA, Pilyavsky AI, Maznichenko AV Activation of neurons of the medullary centers of the autonomic nervous system of rats in the implementation of their motivated operant motions . Neurophysiology . Neurophysiology. 2010. 42, No. 5. P. 390-404.
CrossRef
- Vlasenko OV, Dovgan OV, Pilyavsky OI, Maysky VA, Maznichenko AV Changes in c-fos expression and NADPH-diaphorase activity in different nuclei of the hypothalamus during food withdrawal or operative eating movements in rats . Neurophysiology . Neurophysiology 2009. 41, N 2. P. 173-182.
CrossRef
- Vlasenko OV, Rokunets IL, Chechel VV Telemetric eight-channel system for the transfer of physiological parameters of laboratory animals . Current problems of modern medicine. 2010. 10, No. 1. P. 9-14.
- Vlasenko OV, Pilyavsky AI, Maysky VA, Maznichenko AV Fos-immunoreactivity and NADPH-d-reactivity in the cortex of large hemispheres of rats implementing motivated stereotyped movements of the forelimb . Neurophysiology . Neurophysiology. 2008. 40, N 4. P. 351-361.
CrossRef
- Moibenko AA, Pavlyuchenko VB, Datsenko VV, Maysky VA The role of nitric oxide in the mechanisms of formation of reflex vasomotor reactions . Uspekhi fiziol. Sciences. 2005. 36, N 4. P. 3-12.
- Moroz VM, Yoltukhivskyy MV, Vlasenko OV Lateral hypothalamus and prefrontal cortex in the organization of arbitrary motions. Vinnitsa-Kyiv: Tsentr. metod. kabinet z vishch. med. osviti, 1998. 181 p.
- Patent. 15851 UA, IPC A61B 5. 04. Device for telemetric transmission of impulse activity of neurons . Moroz VM, Chechel VV, Vlasenko OV, Rokunets IL, Yoltukhivsky MV (UA); Vin. nats. med. un. im M.I. Pirogova. N u2005 12762; publ. July 17, 2006, Bul. N 7.
- Ally A. Ventrolateral medullary control of cardiovascular activity during muscle contraction . Neurosci. Biobehav. Rev. 1998. 23. P. 65-86.
CrossRef
- Anokhin K.V., Ryabinin A.E., Sudakov K.V. Expression of the c-fos gene in the mouse brain during the acquisition of defensive behavior habits . Neurosci. Behav. Physiol. 2001. 31. P. 139-143.
CrossRef
PubMed
- Barot S.K., Bernstein I.L. Polycose taste pre-exposure fails to infuence behavioral and neural induces of taste novelty . Behav. Neurosci. 2005. 11 9 . P. 1640-1647.
CrossRef
PubMed PubMedCentral
- Batten T.F., Gamboa-Esteves F.O., Saha S. Evidence for peptide co-transmission in retrograde- and anterograde-labelled central nucleus of amygdala neurones projecting to NTS . Auton. Neurosci. 2002. 98. R. 28-32.
CrossRef
- Dampney R.A., Horiuchi J. Functional organisation of central cardiovascular pathways: studies using c-fos gene expression . Prog. Neurobiol. 2003. 71. R. 359-384.
CrossRef
PubMed
- Gallagher M., Graham P.W., Holland P.C. The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior . J. Neurosci. 1990. 10. P. 1906-1911.
CrossRef
PubMed PubMedCentral
- Herdegen T., Leah J.D. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB. ATF proteins . Brain Res. Rev. 1998. 28. P. 370-490.
CrossRef
- Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures . J. Histochem. Cytochem. 1981. 29. P. 577-580.
CrossRef
PubMed
- Kleim J.A., Lussnig E., Schwarz E.R., Comery T.A., Greenough W.T. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning . J. Neurosci. 1996. 16. P. 4529-4535.
CrossRef
PubMed PubMedCentral
- Knapska E., Radwanska K., Werka T., Kaczmarek L. Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse . Physiol. Rev. 2007. 87. R. 1113-1173.
CrossRef
PubMed
- Koh M.T., Wilkins E.E., Bernstein I.L. Novel tastes elevate c-fos expression in the central amygdala and insular cortex: implication for taste aversion learning . Behav. Neurosci. 2003. 117. P. 1416-1422.
CrossRef
PubMed
- Krukoff T.L., Khalili P. Stress-induced activation of nitric oxide-producing neurons in the rat brain . J. Comp. Neurol. 1997. 377. P. 509-519.
CrossRef
- Maisky V.A., Datsenko V.V., Moibenko A.A., Bugaychenko L.A., Pilyavskii A.I., Kostyukov A.I., Kalezic I., Johansson H. NO-generating neurons in the medullary cardiovascular centers of rodents and carnivores . Comp. Biochem. Physiol. 2003. 136. R. 605 612.
CrossRef
- Maisky V.A., Pilyavskii A.I., Kalezic I., Ljubisavljevic M., Kostyukov A.I., Windhorst U., Johansson H. NADPH-diaphorase activity and c-fos expression in medullary neurons after fatiguing stimulation of hindlimb muscles in the rat . Auton. Neurosci. 2002. 101. P. 1-12.
CrossRef
- Manning B.H., Martin W.J., Meng I.D. The rodent amygdala contributes to the production of cannabinoid-induced antinociception . Neuroscience. 2003. 120. R. 1157-1170.
CrossRef
- Maznychenko A.V., Pilyavskii A.I., Kostyukov A.I., Lyskov E., Vlasenko O.V., Maisky V.A. Coupling of c-fos expression in the spinal cord and amygdala induced by dorsal neck muscles fatigue . Histochem. Cell Biol. 2007. 128. P. 85-90.
CrossRef
PubMed
- Meller S.T., Gebhart G.F. Nitric oxide (NO) and nociceptive processing in the spinal cord . Pain. 1993. 52. P. 127-136.
CrossRef
- Monfls M.H., Plautz E.J., Kleim J.A. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience . Neuroscientist. 2005. 11. P. 471-483.
CrossRef
PubMed
- Neugebauer V. , Li W., Bird G.C., Han J.S. The amygdala and persistent pain . Neuroscientist. 2004. 10. R. 221-234.
CrossRef
PubMed
- Okere C.O., Kaba H., Higuchi T. Importance of endogenous nitric oxide synthase in the rat hypothalamus and amygdala in mediating the response to capsaicin . J. Comp. Neurol. 2000. 423. P. 670-686.
CrossRef
- Park T.H., Carr K.D. Neuroanatomical patterns of fos-like immunoreactivity induced by a palatable meal and meal-paired environment in saline- and naltrexone-treated rats . Brain. Res. 1998. 805. P. 169-180.
CrossRef
- Paxinos G., Watson C. The rat brain in stereotaxic coordinates. San Diego: Acad. Press, 1997.
- Pilyavskii A.I., Maznychenko A.V., Maisky V.A., Kostyukov A.I., Hellstrom F., Windhorst U. Capsaicin-induced effects on c-fos expression and NADPH-diaphorase activity in the feline spinal cord . Eur. J. Pharmacol. 2005. 521. P. 70-78.
CrossRef
PubMed
- Saha S. Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei . Clin. Exp. Pharmacol. Physiol. 2005. 32. R. 450-456.
CrossRef
PubMed
- Sequeira H, Ba-M'hamed S. Pyramidal control of heart rate and arterial pressure in cats . Arch. Ital. Biol. 1999. 137. R. 47-62.
- Sequeira H., Viltart O., Ba-M'Hamed S., Poulain P. Cortical control of somato-cardiovascular integration: neuroanatomical studies . Brain Res. Bull. 2000. 53. R. 87-93.
CrossRef
- Swanson L.W., Petrovich G.D. What is the amygdala? . Trends Neurosci. 1998. 21. P. 323-331.
CrossRef
- Usunoff K.G., Itzev D.E., Rolfs A., Schmitt O., Wree A. Nitric oxide synthase-containing neurons in the amygdaloid nuclear complex of the rat . Anat. Embryol. (Berl.). 2006. 211. P. 721-737.
CrossRef
PubMed
- Vincent S.R., Kimura H. Histochemical mapping of nitric oxide synthase in the rat brain . Neuroscience. 1992. 46. R. 755-784.
CrossRef
|