Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2012; 58(5): 44-55


Food-procuring stereotype movements is accompanied by changes of c-Fos gene expression in the amygdala and modulation of heart rate in rats

Dovgan' OV, Vlasenko OV, Buzyka TV, Maĭs'kyĭ VO, Piliavs'kyĭ OI, Maznychenko AV.

  1. M.I. Pirogov National Medical University, Vinnitsa, Ukraine
  2. I.I. Mechnikov National University, Odessa, Ukraine
  3. O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz58.05.044

Abstract

The distribution of Fos-immunoreactive (Fos-ir) and NADPH-diapporase reactive (NADPH-dr-) neurons in the different subnuclei of amygdala and insular cortex (on the level -2,12 to -3,14 mm from bregma), and the associated changes of heart rate (HR) in intact, food-deprivated and executed food-procuring movements of rats were studied. In comparison with other groups of animals, the mean number of the Fos-ir neurons in the central nucleus of amygdala (Ce) and the insular cortex (GI/DI) at all studied levels was signifcantly greater in the executed food-procuring movements in rats. The main focus of localization of the Fos-ir neurons was found in lat­eral part of the Ce (58,5 ± 1,9 units in 40-mm-thick section) at the level -2,56 mm. The mean number of Fos-ir neurons was signifcantly greater also in the lateral and capsular parts of the Ce. The mean number of Fos-ir neurons in the GI/DI was 165,5 ± 3,2 cells in section. The number and density of NADPH-d reactive neurons was not signifcantly different in the brain structures of all animal groups studied. The double stained neurons (Fos-ir + NADPH-dr) were registered in me­dial, basolateral, anterior cortical amygdaloid nuclei and sub-stantia innominata (SI) in rats after realization food-procuring movements. It was found that realization of food-procuring movements by the forelimb during repeated sessions was ac­companied with the gradual decline of mean values of the HR (from 5% to 12% of control level) with subsequent renewal of them to the initial values (tonic component). The analysis of dynamics of the HR changes during realization of separate purposeful motion has shown the transient period of the HR suppression (500 ms), which coincided with the terminal phase of grasping of food pellet (phasic component). We suggest that the revealed focuses of localization of Fos-ir neurons in the lateral and medial subregions of amigdaloid Ce and also GI/ DI, and SI testifed that these structures of brain are involved in generation of the goal-directed motions. Direct projections of these subnuclei (and hypothalamus) to the cardiovascular centers of the medulla determine the associated regulation of the cardiovascular system function in the period of realization of the goal-directed motions in animals.

Keywords: operant reflex, c-fos expression, NADPH-d reactivity,amygdala, insular cortex, rat.

References

  1. Dovgan AV, Vlasenko OV, Maznichenko AV, Pilyavsky AI, Maysky VA Operant reflexes and c-fos gene expression in the nuclei of the amygdala and the insular cortex of rats . Neurophysiology . Neurophysiology. 2011. 43, N 3. P. 277-280. CrossRef  
  2. Dovgan OV, Vlasenko OV, Maysky VA, Pilyavsky OI, Maznichenko AV Topography of Phos immunoreactive and NADPH-d-reactive neurons in the limbic structures of the forebrain and hypothalamus in the implementation of motivated stereotyped movements in rats . Neurophysiology . Neurophysiology 2009. 41, No. 1. P. 32-40. CrossRef  
  3. Vlasenko OV, Buzyka TV, Maysky VA, Pilyavsky AI, Maznichenko AV Activation of neurons of the medullary centers of the autonomic nervous system of rats in the implementation of their motivated operant motions . Neurophysiology . Neurophysiology. 2010. 42, No. 5. P. 390-404. CrossRef  
  4. Vlasenko OV, Dovgan OV, Pilyavsky OI, Maysky VA, Maznichenko AV Changes in c-fos expression and NADPH-diaphorase activity in different nuclei of the hypothalamus during food withdrawal or operative eating movements in rats . Neurophysiology . Neurophysiology 2009. 41, N 2. P. 173-182. CrossRef  
  5. Vlasenko OV, Rokunets IL, Chechel VV Telemetric eight-channel system for the transfer of physiological parameters of laboratory animals . Current problems of modern medicine. 2010. 10, No. 1. P. 9-14.
  6.  
  7. Vlasenko OV, Pilyavsky AI, Maysky VA, Maznichenko AV Fos-immunoreactivity and NADPH-d-reactivity in the cortex of large hemispheres of rats implementing motivated stereotyped movements of the forelimb . Neurophysiology . Neurophysiology. 2008. 40, N 4. P. 351-361. CrossRef  
  8. Moibenko AA, Pavlyuchenko VB, Datsenko VV, Maysky VA The role of nitric oxide in the mechanisms of formation of reflex vasomotor reactions . Uspekhi fiziol. Sciences. 2005. 36, N 4. P. 3-12.
  9.  
  10. Moroz VM, Yoltukhivskyy MV, Vlasenko OV Lateral hypothalamus and prefrontal cortex in the organization of arbitrary motions. Vinnitsa-Kyiv: Tsentr. metod. kabinet z vishch. med. osviti, 1998. 181 p.
  11.  
  12. Patent. 15851 UA, IPC A61B 5. 04. Device for telemetric transmission of impulse activity of neurons . Moroz VM, Chechel VV, Vlasenko OV, Rokunets IL, Yoltukhivsky MV (UA); Vin. nats. med. un. im M.I. Pirogova. N u2005 12762; publ. July 17, 2006, Bul. N 7.
  13.  
  14. Ally A. Ventrolateral medullary control of cardiovascular activity during muscle contraction . Neurosci. Biobehav. Rev. 1998. 23. P. 65-86. CrossRef  
  15. Anokhin K.V., Ryabinin A.E., Sudakov K.V. Expression of the c-fos gene in the mouse brain during the acquisition of defensive behavior habits . Neurosci. Behav. Physiol. 2001. 31. P. 139-143. CrossRef PubMed
  16.  
  17. Barot S.K., Bernstein I.L. Polycose taste pre-exposure fails to infuence behavioral and neural induces of taste novelty . Behav. Neurosci. 2005. 11 9 . P. 1640-1647. CrossRef PubMed PubMedCentral
  18.  
  19. Batten T.F., Gamboa-Esteves F.O., Saha S. Evidence for peptide co-transmission in retrograde- and anterograde-labelled central nucleus of amygdala neurones projecting to NTS . Auton. Neurosci. 2002. 98. R. 28-32. CrossRef  
  20. Dampney R.A., Horiuchi J. Functional organisation of central cardiovascular pathways: studies using c-fos gene expression . Prog. Neurobiol. 2003. 71. R. 359-384. CrossRef PubMed
  21.  
  22. Gallagher M., Graham P.W., Holland P.C. The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior . J. Neurosci. 1990. 10. P. 1906-1911. CrossRef PubMed PubMedCentral
  23.  
  24. Herdegen T., Leah J.D. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB. ATF proteins . Brain Res. Rev. 1998. 28. P. 370-490. CrossRef  
  25. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures . J. Histochem. Cytochem. 1981. 29. P. 577-580. CrossRef PubMed
  26.  
  27. Kleim J.A., Lussnig E., Schwarz E.R., Comery T.A., Greenough W.T. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning . J. Neurosci. 1996. 16. P. 4529-4535. CrossRef PubMed PubMedCentral
  28.  
  29. Knapska E., Radwanska K., Werka T., Kaczmarek L. Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse . Physiol. Rev. 2007. 87. R. 1113-1173. CrossRef PubMed
  30.  
  31. Koh M.T., Wilkins E.E., Bernstein I.L. Novel tastes elevate c-fos expression in the central amygdala and insular cortex: implication for taste aversion learning . Behav. Neurosci. 2003. 117. P. 1416-1422. CrossRef PubMed
  32.  
  33. Krukoff T.L., Khalili P. Stress-induced activation of nitric oxide-producing neurons in the rat brain . J. Comp. Neurol. 1997. 377. P. 509-519. CrossRef  
  34. Maisky V.A., Datsenko V.V., Moibenko A.A., Bugaychenko L.A., Pilyavskii A.I., Kostyukov A.I., Kalezic I., Johansson H. NO-generating neurons in the medullary cardiovascular centers of rodents and carnivores . Comp. Biochem. Physiol. 2003. 136. R. 605 612. CrossRef  
  35. Maisky V.A., Pilyavskii A.I., Kalezic I., Ljubisavljevic M., Kostyukov A.I., Windhorst U., Johansson H. NADPH-diaphorase activity and c-fos expression in medullary neurons after fatiguing stimulation of hindlimb muscles in the rat . Auton. Neurosci. 2002. 101. P. 1-12. CrossRef  
  36. Manning B.H., Martin W.J., Meng I.D. The rodent amygdala contributes to the production of cannabinoid-induced antinociception . Neuroscience. 2003. 120. R. 1157-1170. CrossRef  
  37. Maznychenko A.V., Pilyavskii A.I., Kostyukov A.I., Lyskov E., Vlasenko O.V., Maisky V.A. Coupling of c-fos expression in the spinal cord and amygdala induced by dorsal neck muscles fatigue . Histochem. Cell Biol. 2007. 128. P. 85-90. CrossRef PubMed
  38.  
  39. Meller S.T., Gebhart G.F. Nitric oxide (NO) and nociceptive processing in the spinal cord . Pain. 1993. 52. P. 127-136. CrossRef  
  40. Monfls M.H., Plautz E.J., Kleim J.A. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience . Neuroscientist. 2005. 11. P. 471-483. CrossRef PubMed
  41.  
  42. Neugebauer V. , Li W., Bird G.C., Han J.S. The amygdala and persistent pain . Neuroscientist. 2004. 10. R. 221-234. CrossRef PubMed
  43.  
  44. Okere C.O., Kaba H., Higuchi T. Importance of endogenous nitric oxide synthase in the rat hypothalamus and amygdala in mediating the response to capsaicin . J. Comp. Neurol. 2000. 423. P. 670-686. CrossRef  
  45. Park T.H., Carr K.D. Neuroanatomical patterns of fos-like immunoreactivity induced by a palatable meal and meal-paired environment in saline- and naltrexone-treated rats . Brain. Res. 1998. 805. P. 169-180. CrossRef  
  46. Paxinos G., Watson C. The rat brain in stereotaxic coordinates. San Diego: Acad. Press, 1997.
  47.  
  48. Pilyavskii A.I., Maznychenko A.V., Maisky V.A., Kostyukov A.I., Hellstrom F., Windhorst U. Capsaicin-induced effects on c-fos expression and NADPH-diaphorase activity in the feline spinal cord . Eur. J. Pharmacol. 2005. 521. P. 70-78. CrossRef PubMed
  49.  
  50. Saha S. Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei . Clin. Exp. Pharmacol. Physiol. 2005. 32. R. 450-456. CrossRef PubMed
  51.  
  52. Sequeira H, Ba-M'hamed S. Pyramidal control of heart rate and arterial pressure in cats . Arch. Ital. Biol. 1999. 137. R. 47-62.
  53.  
  54. Sequeira H., Viltart O., Ba-M'Hamed S., Poulain P. Cortical control of somato-cardiovascular integration: neuroanatomical studies . Brain Res. Bull. 2000. 53. R. 87-93. CrossRef  
  55. Swanson L.W., Petrovich G.D. What is the amygdala? . Trends Neurosci. 1998. 21. P. 323-331. CrossRef  
  56. Usunoff K.G., Itzev D.E., Rolfs A., Schmitt O., Wree A. Nitric oxide synthase-containing neurons in the amygdaloid nuclear complex of the rat . Anat. Embryol. (Berl.). 2006. 211. P. 721-737. CrossRef PubMed
  57.  
  58. Vincent S.R., Kimura H. Histochemical mapping of nitric oxide synthase in the rat brain . Neuroscience. 1992. 46. R. 755-784. CrossRef

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.