Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2012; 58(5): 44-55


Food-procuring stereotypemovements is accompanied bychanges of C-FOS gene expression inthe amygdala and modulation ofheart rate in rats

A.V. Dovgan’, O.V. Vlasenko, T.V. Buzyka,V.A. Maisky, A.I. Pilyavskii, A.V. Maznychenko

    M.I. Pirogov National Medical University, Vinnitsa;I.I. Mechnikov National University, Odessa;O.O. Bogomoletz Institute of Physiology, National Academyof Sciences of Ukraine, Kyiv.


Abstract

The distribution of Fos-immunoreactive (Fos-ir) and NADPH-diapporase reactive (NADPH-dr-) neurons in the different subnuclei of amygdala and insular cortex (on the level -2,12 to -3,14 mm from bregma), and the associated changes of heart rate (HR) in intact, food-deprivated and executed food-procuring movements of rats were studied. In comparison with other groups of animals, the mean number of the Fos-ir neurons in the central nucleus of amygdala (Ce) and the insular cortex (GI/DI) at all studied levels was signifcantly greater in the executed food-procuring movements in rats. The main focus of localization of the Fos-ir neurons was found in lat­eral part of the Ce (58,5 ± 1,9 units in 40-mm-thick section) at the level -2,56 mm. The mean number of Fos-ir neurons was signifcantly greater also in the lateral and capsular parts of the Ce. The mean number of Fos-ir neurons in the GI/DI was 165,5 ± 3,2 cells in section. The number and density of NADPH-d reactive neurons was not signifcantly different in the brain structures of all animal groups studied. The double stained neurons (Fos-ir + NADPH-dr) were registered in me­dial, basolateral, anterior cortical amygdaloid nuclei and sub-stantia innominata (SI) in rats after realization food-procuring movements. It was found that realization of food-procuring movements by the forelimb during repeated sessions was ac­companied with the gradual decline of mean values of the HR (from 5% to 12% of control level) with subsequent renewal of them to the initial values (tonic component). The analysis of dynamics of the HR changes during realization of separate purposeful motion has shown the transient period of the HR suppression (500 ms), which coincided with the terminal phase of grasping of food pellet (phasic component). We suggest that the revealed focuses of localization of Fos-ir neurons in the lateral and medial subregions of amigdaloid Ce and also GI/ DI, and SI testifed that these structures of brain are involved in generation of the goal-directed motions. Direct projections of these subnuclei (and hypothalamus) to the cardiovascular centers of the medulla determine the associated regulation of the cardiovascular system function in the period of realization of the goal-directed motions in animals.

Keywords: operant reflex, c-fos expression, NADPH-d reactivity,amygdala, insular cortex, rat.

References

  1. Довгань А.В., Власенко О.В., Мазниченко А.В., Пилявский А.И., Майский В.А. Оперантные рефлексы и экспрессия гена c-fos в ядрах миндалины и инсуляр-ной коре крыс // Нейрофизиология / Neurophysiology. – 2011. – 43, №3. – С. 277–280.
  2. Довгань О.В., Власенко О.В., Майський В.О., Пілявський О.І., Мазниченко А.В. Топографія Фос-імунореак-тивних та НАДФН-д-реактивних нейронів у лімбічних структурах основи переднього мозку та гіпоталамусі при реалізації мотивованих стереотипних рухів у щурів // Там само. – 2009. – 41, № 1. – С. 32–40.
  3. Власенко О.В., Бузыка Т.В., Майский В.А., Пилявский А.И., Мазниченко А.В. Активация нейронов медул­лярных центров автономной нервной системы крыс при реализации ими мотивированных оперантных движений // Там само. – 2010. – 42, № 5 . – С. 390–404.
  4. Власенко О.В., Довгань О.В., Пілявський О.І., Майський В.О., Мазниченко А.В. Зміни с-fos експресії та НАДФН-діафоразної активності в різних ядрах гіпоталамуса під час відсторонення від їжі або реалізації оперантних їжодобувних рухів у щурів // Там само. – 2009. – 41, №2. – С. 173–182.
  5. Власенко О.В., Рокунець І.Л., Чечель В.В. Телеметрична восьмиканальна система передачі фізіологічних па­раметрів лабораторних тварин // Актуальні проблеми сучасної медицини. – 2010. – 10, № 1. – С. 9–14.
  6. Власенко О.В., Пилявский А.И., Майский В.А., Мазниченко А.В. Fos-иммунореактивность и НАДФН-д-реактивность в коре больших полушарий крыс, реализующих мотивированные стереотипные дви­жениях передней конечностью // Нейрофизиология / Neurophysiology. – 2008. – 40, № 4. – С. 351–361.
  7. Мойбенко А.А., Павлюченко В.Б., Даценко В.В., Майский В.А. Роль оксида азота в механизмах формиро­вания рефлекторных вазомоторных реакций // Успехи физиол. наук. – 2005. – 36, № 4. – С. 3–12.
  8. Мороз В.М., Йолтухівський М.В., Власенко О.В. Латеральний гіпоталамус і префронтальна кора в організації довільних рухів. – Вінниця-Київ: Центр. метод. кабінет з вищ. мед. освіти, 1998. – 181 с.
  9. 9. Пат. 15851 UA, МПК А61В 5/04. Пристрій для телеметричної передачі імпульсної активності нейронів / Мороз В.М., Чечель В.В., Власенко О.В., Рокунець І.Л., Йолтухівський М.В. (UA); – Він. нац. мед. ун. ім М.І. Пирогова. – № u2005 12762; опубл. 17.07.2006, Бюл. № 7.
  10. 10. Ally A. Ventrolateral medullary control of cardiovascular activity during muscle contraction // Neurosci. Biobehav. Rev. – 1998. – 23. – P. 65–86.
  11. Anokhin K.V., Ryabinin A.E., Sudakov K.V. Expression of the c-fos gene in the mouse brain during the acquisition of defensive behavior habits // Neurosci. Behav. Physiol. – 2001. – 31. – P. 139–143.
  12. Barot S.K., Bernstein I.L. Polycose taste pre-exposure fails to infuence behavioral and neural induces of taste novelty // Behav. Neurosci. – 2005. – 11 9 . – P. 1640–1647.
  13. Batten T.F., Gamboa-Esteves F.O., Saha S. Evidence for peptide co-transmission in retrograde- and anterograde-labelled central nucleus of amygdala neurones projecting to NTS // Auton. Neurosci. – 2002. – 98. – Р. 28–32.
  14. Dampney R.A., Horiuchi J. Functional organisation of central cardiovascular pathways: studies using c-fos gene expression // Prog. Neurobiol. – 2003. – 71. – Р. 359–384.
  15. Gallagher M., Graham P.W., Holland P.C. The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior // J. Neurosci. – 1990. – 10. – P. 1906–1911.
  16. Herdegen T., Leah J.D. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins // Brain Res. Rev. – 1998. – 28. – P. 370–490.
  17. Hsu S.-M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures // J. Histochem. Cytochem. – 1981. – 29. – P. 577–580.
  18. Kleim J.A., Lussnig E., Schwarz E.R., Comery T.A., Greenough W.T. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning // J. Neurosci. – 1996. – 16. – P. 4529–4535.
  19. 19. Knapska E., Radwanska K., Werka T., Kaczmarek L. Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse // Physiol. Rev. – 2007. – 87. – Р. 1113–1173.
  20. 20. Koh M.T., Wilkins E.E., Bernstein I.L. Novel tastes elevate c-fos expression in the central amygdala and insular cortex: implication for taste aversion learning // Behav. Neurosci. – 2003. – 117. – P. 1416–1422.
  21. Krukoff T.L., Khalili P. Stress-induced activation of nitric oxide-producing neurons in the rat brain // J. Comp. Neurol. – 1997. – 377. – P. 509–519.
  22. Maisky V.A., Datsenko V.V., Moibenko A.A., Bugaychenko L.A., Pilyavskii A.I., Kostyukov A.I., Kalezic I., Johansson H. NO-generating neurons in the medullary cardiovascular centers of rodents and carnivores // Comp. Biochem. Physiol. – 2003. – 136. – Р. 605 – 612.
  23. Maisky V.A., Pilyavskii A.I., Kalezic I., Ljubisavljevic M., Kostyukov A.I., Windhorst U., Johansson H. NADPH-diaphorase activity and c-fos expression in medullary neurons after fatiguing stimulation of hindlimb muscles in the rat // Auton. Neurosci. – 2002. – 101. – P. 1–12.
  24. Manning B.H., Martin W.J., Meng I.D. The rodent amygdala contributes to the production of cannabinoid-induced antinociception // Neuroscience. – 2003. – 120. – Р. 1157–1170.
  25. Maznychenko A.V., Pilyavskii A.I., Kostyukov A.I., Lyskov E., Vlasenko O.V., Maisky V.A. Coupling of c-fos expression in the spinal cord and amygdala induced by dorsal neck muscles fatigue // Histochem. Cell Biol. – 2007. – 128. – P. 85–90.
  26. Meller S.T., Gebhart G.F. Nitric oxide (NO) and nociceptive processing in the spinal cord // Pain. – 1993. – 52. – P. 127–136.
  27. Monfls M.H., Plautz E.J., Kleim J.A. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience // Neuroscientist. – 2005. – 11. – P. 471–483.
  28. Neugebauer V. , Li W., Bird G.C., Han J.S. The amygdala and persistent pain // Neuroscientist. – 2004. – 10. – Р. 221–234.
  29. 29. Okere C.O., Kaba H., Higuchi T. Importance of endogenous nitric oxide synthase in the rat hypothalamus and amygdala in mediating the response to capsaicin // J. Comp. Neurol. – 2000. – 423. – P. 670–686.
  30. 30. Park T.H., Carr K.D. Neuroanatomical patterns of fos-like immunoreactivity induced by a palatable meal and meal-paired environment in saline- and naltrexone-treated rats // Brain. Res. – 1998. – 805. – P. 169–180.
  31. Paxinos G., Watson C. The rat brain in stereotaxic coordinates. – San Diego: Acad. Press, 1997.
  32. Pilyavskii A.I., Maznychenko A.V., Maisky V.A., Kostyukov A.I., Hellstrom F., Windhorst U. Capsaicin-induced effects on c-fos expression and NADPH-diaphorase activity in the feline spinal cord // Eur. J. Pharmacol. – 2005. – 521. – P. 70–78.
  33. Saha S. Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei // Clin. Exp. Pharmacol. Physiol. – 2005. – 32. – Р. 450–456.
  34. Sequeira H, Ba-M’hamed S. Pyramidal control of heart rate and arterial pressure in cats // Arch. Ital. Biol. – 1999. – 137. – Р. 47–62.
  35. Sequeira H., Viltart O., Ba-M’Hamed S., Poulain P. Cortical control of somato-cardiovascular integration: neuroanatomical studies // Brain Res. Bull. – 2000. – 53. – Р. 87–93.
  36. Swanson L.W., Petrovich G.D. What is the amygdala? // Trends Neurosci. – 1998. – 21. – P. 323–331.
  37. Usunoff K.G., Itzev D.E., Rolfs A., Schmitt O., Wree A. Nitric oxide synthase-containing neurons in the amygdaloid nuclear complex of the rat // Anat. Embryol. (Berl.). – 2006. – 211. – P. 721–737.
  38. Vincent S.R., Kimura H. Histochemical mapping of nitric oxide synthase in the rat brain // Neuroscience. – 1992. – 46. – Р. 755–784.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.