Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2012; 58(4): 44-51


Cardiohemodynamics and efficiency Frank-Starling mechanism in spontaneously hypertensive rats

Dorofeieva NO, Kuz'menko MO, Shimans'ka TV, Sagach VF.

    Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz58.04.044

Abstract

We studied cardiohemodynamics and effciency Frank–Starling mechanism in 6-month-old spontaneously hypertensive rats (SHR) and age-matched Wistar rats, using pressure-volume (PV) conductance catheter system (Millar Instruments, Houston, TX) to evaluate systolic and diastolic function in vivo. Rats were anesthetized with urethane. Cardiohemodynamics analyzed using PVAN 3.6 (Millar Instruments). We found that systolic and diastolic function of the heart in spontaneously hypertensive rats were lower, than in controls. We have shown, inhibition of the effciency Frank–Starling mechanism, increasing arterial stiffness in spontaneously hypertensive rats. It’s shown, less effciency heart work, with more energy and more oxygen consumption in spontaneously hypertensive rats, may be associated with increasing arterial stiffness and decrease functional reserve of the heart.

Keywords: heart, hypertension, cardiohemodynamics, Frank–Starling mechanism.

References

  1. Budnikov E.Yu., Postnov A.Yu., Doroshchuk A.D., Afanasyeva G.V., Postnov Yu.V. Reduced ATP-synthesizing ability of the liver mitochondria of spontaneously hypertensive rats (SHR): the role of calcium mitochondrial overload . Cardiology. 2002. No. 12. S. 47-50.
  2.  
  3. Doroshchuk A.D., Postnov A.Yu., Afanasyeva G.V., Budnikov E.Yu., Postnov Yu.V. Reduced ATP-synthesizing ability of mitochondria of rat brain cells with spontaneous hypertension (SHR) . Ibid. 2004. No. 3. S. 64-65.
  4.  
  5. Kapelko V.I., Titov V.N., Novikova N.A. The protective effect of extracellular K + in the myocardium in violation of energy production . Ibid. 1983 . No. 3. S. 14-20.
  6.  
  7. Kapelko V.I., Novikova N.A., Saks V.A. Relaxability and extensibility of the heart during energy deficiency . Fiziol. journal THE USSR. 1988. No. 2. S. 202-208.
  8.  
  9. Postnov Yu.V. On the development of the membrane concept of the pathogenesis of primary hypertension: impaired mitochondrial function and energy deficiency . Cardiology. 2000. No. 10. S. 4-12.
  10.  
  11. Postnov Yu.V., Orlov S.N., Budnikov E.Yu., Doroshchuk A.D., Postnov A.Yu. Violation of energy conversion in mitochondria of cells with a decrease in ATP synthesis as a cause of a stationary increase in systemic blood pressure . Ibid. 2008. No. 8. P. 49-59.
  12.  
  13. Chekman IS, Korneykova Ya.M. Spontaneous arterial hypertension in rats: morpho-functional changes in organs, pharmacological correction . Scientific Bulletin of the OO Bogomolets National Medical University.- 2009. N 1. P.132 139.
  14.  
  15. Bing OH. L., Brooks W.W., Robinson K.G., Slawsky M.T., Hayes J.A., Litwin S.E., Sen S., Conrad C.H. The spontaneously hypertensive rat as a model of the transi­tion from compensated left ventricular hypertrophy to failure . J. Mol. Cell. Cardiol. 1995. 27. P. 383-396. CrossRef  
  16. Cingolani Osc. H. Yang X.-P., Cavasin M.A., Carretero Osc. A. Increased systolic performance with diastolic dysfunction in adult spontaneously hypertensive rats . Hypertension. 2003. N 41. P.249-254. CrossRef PubMed
  17.  
  18. Frohlich E., Vagaric J. Sodium directly impairs organ function in hypertension . Curr. Opin. in Cardiol. 2005. N 20. P.424-429. CrossRef PubMed
  19.  
  20. Jiillig M., Hickey A.J. Is the failing heart out of fuel or a worn engine running rich? A study of mitochondria in old spontaneously hypertensive rats . Proteomics. 2008, Jun. 8(12). P.2556-2572. CrossRef PubMed
  21.  
  22. Kass D.A. Myocardial mechanics. In: Heart failure. Scientifc principles and clinical practice. New York: Churchill Livingstone. 1997. P.87-108.
  23.  
  24. Kobayashi T., Hamada M., Okayama H., Shigematsu Y., Sumimoto T., Hiwada K. Contractile properties of left ventricular myocytes isolated from spontaneously hypertensive rats: effect of angiotensin II . J. Hypertens. 1995. 13. P.1803-1807. CrossRef  
  25. Mirsky I., Pfeffer J.M., Pfeffer M.A., Braunwald E. The contractile state as the major determinant in the evolution of left ventricular dysfunction in the spontaneously hyper­tensive rat . Circulat. Res. 1983. N 53. P. 767-778. CrossRef PubMed
  26.  
  27. Nicholls D.G. Mitochondrial membrane potential and aging . Aging Cell. 2004. N 3. P. 35-40. CrossRef PubMed
  28.  
  29. Pacher P. , Nagayama T. , Mukhopadhyay P.,Batkai S., Kass D.A. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat. Protoc. 2008. 3, N 9.- P.1422-1434. CrossRef PubMed PubMedCentral
  30.  
  31. Pfeffer M.A., Frohlich E.D., Pfeffer J.M., Weiss A.K. Pathophysiological implications of the increased car­diac output of young spontaneously hypertensive rats . Circulat. Res. 1974. 34. 35 (suppl I).-P. I-235-I-242.
  32.  
  33. Shorofsky S.R., Aggarwal R., Corretti M., Baffa J.M., Strum J.M., Al-Seikhan B.A., Kobayashi Y.M., Jones L.R., Wier W.G., Balke C.W. Cellular mechanisms of altered contractility in the hypertrophied heart: big hearts, big sparks . Ibid. 1999. 84. P.424-434. CrossRef PubMed
  34.  
  35. Ronquist G., Soussi D., Frithz G. Disturbed energy balance in skeletal muscle of patients with untreated primary hypertension . J. Intern. Med. 1995. N 238. P.167-174. CrossRef PubMed
  36.  
  37. Segers P., Georgakopoulos D., Afanasyeva A. Con­ductance catheter-based assessment of arterial input impedance, arterial function, and ventricular-vascular interaction in mice . Amer. J. Physiol. Heart Circulat. Physiol. 2005. 288, N 3. P.1157-1164. CrossRef PubMed
  38.  
  39. Suga H. Ventricular energetics . Physiol. Rev. 1990. 70, N 2. P.247-277. CrossRef PubMed
  40.  
  41. Suga H. How we view systolic function of the heart:Emax and PVA.-In:Systolic and diastolic function of the heart. Amsterdam: IOS Press and Ohmsha. 1995. P.215-225.
  42.  
  43. Sunagawa K., Maugham W.L., Sagawa K. Ortimal arte­rial resistence for the maximal stroke work studied in isolated canine left ventricule . Circulat. Res. 1985. 56, N 4. P.586-595. CrossRef PubMed
  44.  
  45. Sarnoff S.I., Braunwald E., Welch G.H., Case R.B., Strainsby W.N., Macrus R. Haemodynamic determinants of oxygen consumption of the heart with special reference to the tention-time index . Amer. J. Physiol. 1958. 192. P. 148-156. CrossRef PubMed
  46.  
  47. Saks Valdur, Dzeja Petras. Cardiac system bioenergetics: metabolic basic of the Frank-Starling law . J. Physiol. 2006. 1, 571 (2). P. 253-273. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.