Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2012; 58(4): 3-12


Phase changes in energy metabolismduring periodic hypoxia

V.I. Portnichenko, V.I. Nosar, A.G. Portnychenko,T.I. Drevitskaya, A.M. Sydorenko,I.N. Mankovskaya

    International Centre for Astronomical, Medical and Ecolo-gical Research, NAS of Ukraine, Kyiv; O.O.Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine


Abstract

Male Wistar rats were exposed to periodic hypobaric hypoxia (PHH), by “lifting” in barochamber at “altitude” 5600 m for 1 h every 3 days (6 s?ances). The dynamics of changes in oxygen consumption (VO2), and body temperature (Tm), as well as in HIF-1a and HIF-3a gene expression, and mitochondrial respiration in the ventricles of the heart was studied. On the basis of the data we identifed four phases of the physiological changes. The frst phase, hypometabolic (1-3 seances), is characterized by decrease in VO2 and Tm, induction of HIF-1a and HIF-3a with delayed transient stimulation of metabolism in response to each seance of hypoxia. In heart mitochondria, V3 and V4 are increased, but V3/V4 and ADP/O are reduced. During the second phase, transitional (3-4 seances), there is reorganization of metabolism and decrease its hypoxic reactivity. The third phase, hypermetabolic (4-5 seances), is characterized by intensifcation of metabolism and compensation of hypoxic disorders. The fourth phase (after 5 seance) – is a state of metabolic adaptation with normalization of VO2 and Tm, expression of HIF-1a and HIF-3a, mitochondrial respiration, increased NAD-dependent oxidation of carbohydrate and lipid substrates. Thus, during PHH consequent rebuilding of processes of oxygen transport, tissue respiration and thermogenesis occurs, mediated by induction of the HIF subunits.

Keywords: periodic hypoxia, mitochondria, HIF-1a , HIF-3a, hypometabolic state, oxygen consumption.

References

  1. Лукьянова Л.Д. Современные проблемы адаптации к гипоксии. Сигнальные механизмы и их роль в си­стемной регуляции // Патол. физиология и эксперим. терапия. – 2011. – № 1. – С.3–19.
  2. Меерсон Ф.З. Адаптационная медицина: механизмы и защитные эффекты адаптации. – М., 1993. – 331 с.
  3. Пожаров В.П. Автоматизированная установка для измерения объемно-временных параметров внешнего дыхания и газообмена у мелких лабораторных живот­ных // Физиол. журн. – 1989. – 35, № 4. – С.119–121.
  4. Портніченко В.І., Портниченко А.Г., Сидоренко А.М. Глікемія як визначальний фактор шляхів перебудови метаболізму і системи дихання при гіпоксії // Патоло­гія. – 2011. – 8, №2. – С. 52–55.
  5. Barros R.C., Zimmer M.E., Branco L.G., Milsom W.K. Hypoxic metabolic response of the golden-mantled ground squirrel // J. Appl. Physiol. – 2001. – 91, № 2. – P. 603–612.
  6. Chance B., Williams G.R. Respiratory enzymes in oxida-tive phosphorylation. Kinetics of oxygen utilization // J. Biol. Chem. – 1955. – 217. – P. 383–393.
  7. Estabrook R.W. Mitochondrial Respiratory Control and the Polarographic Measurement of ADP: O Ratios // Metod. Enzymol. – 1967. – 10. – P. 41–47.
  8. Gautier H., Murariu C., Bonora M. Ventilatory and metabolic responses to ambient hypoxia or hypercapnia in rats exposed to CO hypoxia // J. Appl. Physiol. – 1997. – 83, № 1. – P. 253–261.
  9. 9. Hara S., Hamada J., Kobayashi C., Kondo Y, Imura N. Expression and characterization of hypoxia-inducible factor (HIF)-3a in human kidney: suppression of HIF-mediated gene expression by HIF-3a // Biochemet. Biophys. Res. Commun. – 2001. – 287. – P. 808–813.
  10. 10. Heidbreder M., Frohlich F., Johren O., Dendofer A., Qadri F., Dominiak P. Hypoxia rapidly activates HIF-3alpha mRNA expression // FASEB J. – 2003. – 17, № 11. – P.1541–1543.
  11. Intermittent Hypoxia: From Molecular Mechanisms to Clinical Applications (Physiology – Laboratory and Clinical Research) / Lei XI (Ed.), Tatiana V. Serebrovskaya (Ed.). – Nova Science Pub. Inc., 2010. – 615 p.
  12. Kondrashova M.N., Fedotcheva N.I., Saakyan I.R., Saakyan I.R., Sirota T.V., Lyamzaev K.G., Kulikova M.V., Temnov A.V. Preservation of native properties of mitochondria in rat liver homogenate // Mitochondrion. – 2001. – 1. – P. 249–267.
  13. Manukhina E.B., Downey H.F., Mallet R.T. Role of Nitric Oxide in Cardiovascular Adaptation to Intermittent Hypoxia // Exp. Biol. Med. (Maywood). – 2006. – 231, № 4. – P. 343–365.
  14. Meerson F.Z. Essentials of Adaptive Medicine: Protective effects of adaptation. Moscow: Hypoxia Medical LTD, 1994.
  15. Mortola J.P. Implications of hypoxic hypometabolism during mammalian ontogenesis // Respir. Physiol. Neurobiol. – 2004. – 141, №3. – P. 345–356.
  16. Portnychenko A.G., Dosenko V.E., Portnichenko V.I., Moybenko O.O. Expression of HIF-1a and HIF-3a dif­ferentially changed in rat heart ventricles after hypoxic preconditioning // Proc. of XXVIII ESc Meeting of the ISHR. – Athens, 2008. – Medimond Intern. Proc., 2008. – P.61–64.
  17. Rus A., Del Moral M.L., Molina F., Peinado M.A. Up-regulation of cardiac NO/NOS system during short-term hypoxia and the subsequent reoxygenation period // Eur. J. Histochem. – 2011. – 55, № 2. – P. 91–96.
  18. Semenza G. Hypoxia-Inducible Factor 1 (HIF-1) Pathway // Sci. STKE. – 2007. – 407. – P. cm8.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.