Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2012; 58(3): 85-94


Evaluation of biological effects and possible mechanisms of action of static magnetic field

Chekhun VF, Demash DV, Nalieskina LA.

    R.E. Kavetsky institute of experimental pathology,oncology and radiobiology, NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz58.03.085


Abstract

Modern views on mechanisms of interaction between static magnetic feld and cells or cellular structures are reviewed. An analysis of the data about possible biotropic effects of this factor was performed. The emphasis was put on the analysis of the studies in which moderate (0.1–1 T) static magnetic felds were used, because such felds are used for targeted delivery of magnetosensitive nanocomposites in development of new strategies in target therapy of patients with malignant neoplasms. Based on available data it was concluded that the primary cause of changes in cells after incubation in external static magnetic feld is disruption of free radical metabolism and elevation of their concentration. Such disruption causes oxidative stress, and, as a result, damages ion channels, leading to changes in cell morphology and expression of different genes and proteins, and also changes in apoptosis and proliferation.

Keywords: постоянное магнитное поле, свободно-радикальные процессы, кальций, ионные каналы.

References

  1. Berezov T.T., Yaglova N.V., Dmitrieva T.B., Chekhonin V.P., Zhirkov Yu.A. Directional transport of drugs using liposomes . Vestn. Grew up. Acad. medical sciences. 2004. 3. P. 42-46.
  2.  
  3. Bingi V.N., Savin A.V. Physical problems of the action of weak magnetic fields on biological systems . Successes. physical sciences. 2003. 173. P. 265-300.
  4.  
  5. Weiner L.M., Podoplelov A.V., Leshina T.V. Influence of a magnetic field on the rate of decomposition of H2O2 by a cathode and EDTA complex with Fe3 + . Biophysics. 1978. 23, No. 2. P. 234-241.
  6.  
  7. Gulyar S.A., Limansky Yu.P. Permanent magnetic fields and their application in medicine. K .: Institute of Physiology named after A.A. Bogomolets NAS of Ukraine, 2005 . 320 p.
  8.  
  9. Heard K.M. The variety of types of magnetic ordering in solids . Usp. Fiz. 1984. 142, No. 2. P. 331-357. CrossRef
  10.  
  11. Chekhun V.F., Gorobets S.V., Gorobets O.Yu. Magneto-disordered endogenous entrainment and the problem of fasting permanent magnetic fields in a biosystem . Biofizich. Visn. 2010. 29, No. 2. P. 123-130.
  12.  
  13. Chekhun V.F., Shishova Yu.V. Modern views on the mechanisms of formation of drug resistance of tumors . Oncology. 2000. 2, No. 1-2. P. 11-15.
  14.  
  15. Shpak A.P., Gorbik P.P., Chekhun V.F. Nanocomposites of biomedical applications based on ultrafine magnetite. In: Physical chemistry of nanocomposites and supramolecular structures: Sat. tr . Ed. A.P. Shpaka, P.P. Humpback. K .: Science. Dumka, 2007. P. 45-87.
  16.  
  17. Andresen T. L., Jensen S. S., Jorgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specifc drug release . Prog. Lipid Res. 2005. 44. P. 68-97. CrossRef PubMed
  18.  
  19. Aoki H., Yamazaki H., Yohino T. Akagi T. Effects of static magnetic felds on membrane permeability of a cultured cell line . Res. Commun. Chem. Pathol. Pharmacol. 1990. 69, N 1. P. 103-106.
  20.  
  21. Arosio P., Levi S. Ferritin, iron homeostasis, and oxidative damage . Free Radic. Biol. Med. 2002. 33. P. 457-463. CrossRef.1016/S0891-5849(02)00842-0
  22.  
  23. Ayrapetyan S.N., Grigirian K.V., Avanesian A.S., Stambolstian K.V. Magnetic fields alter electrical properties of solutions and their physiological effects . Bioelectromagnetics. 1994. 15, N 2. P. 133-142. CrossRef PubMed
  24.  
  25. Azanza M.J., Del Moral A. Cell membrane biochemistry and neurobiological approach to biomagnetism . Prog. Neurobiol. 1994. 44, N 6. P. 517-601. CrossRef.1016/0301-0082(94)90004-3
  26.  
  27. Berridge M.J. Unlocking the secrets of cell signaling . Annu. Rev. Physiol. 2005. 67. P. 1-21. CrossRef PubMed
  28.  
  29. Beu T.A. Simulations of Biological Ion Channels in Intense Magnetic Fields . Physica. 2004. 49. P. 91-97.
  30.  
  31. Blumenthal N.C., Ricci J., Breger L., Zychlinsky A., Solomon H., Chen G.G., Kuznetsov D., Dorfman R. Effects of low-intensity AC and. or DC electromagnetic felds on cell attachment and induction of apoptosis . Bioelectromagnetics. 1997. 18, N 3. P. 264-272. CrossRef.1002/(SICI)1521-186X(1997)18:3<264::AID-BEM10>3.0.CO;2-P
  32.  
  33. Carson J.J., Prato F.S., Drost D.J. Diesbourg L.D, Dixon S.J. Time-varying magnetic felds increase cytosolic free Ca2+ in HL-60 cells . Amer. J. Physiol. 1990. 259. P. 687-692. CrossRef PubMed
  34.  
  35. Dobson J. Magnetic nanoparticles for drug delivery . Drug Develop. Res. 2006. 67, N 1. P. 55-60. CrossRef
  36.  
  37. Eveson R.W., Timmel C.R., Brocklehurst B. Hore P.J., McLauchlan K.A. The effects of weak magnetic felds on radical recombination reactions in micelles . Int. J. Radiat. Biol. 2000. 76, N 11. P.1509-1522. CrossRef PubMed
  38.  
  39. Fanelli C., Coppola S., Barone R. Colussi C., Gualandi G., Volpe P., Ghibelli L. Magnetic felds increase cell survival by inhibiting apoptosis via modulation of Ca2+ infux . FASEB J. 1999. 13, N 1. P. 95-102. CrossRef PubMed
  40.  
  41. Fenske D.B. Cullis P.R. Liposomal nanomedicinas . Exp. Opin Drug Deliv. 2008. 5, N 5. P. 25-44. CrossRef PubMed
  42.  
  43. Feynman R.P., Leighton R., Sands M. The Feynman lectures on physics, USA: Addison-Wesley. Vol. 2. 1963. Ch. 37.
  44.  
  45. Forcada A., Suarez I., Fernandez B. Acute and chronic effects of exposure to a 1-mT magnetic feld on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture . Environmental. Res. 2005. 98, N 3. P. 355-362. CrossRef PubMed
  46.  
  47. Fortin-Ripoche J.-P., Martina M.S., Gazeau F., Menager C., Wil helm C., Bacri J.C., Lesieur S., Clement O. Magnetic Targeting of Magnetoliposomes to Solid Tumors with MR Imaging Monitoring in Mice: Feasibility . Radiology. 2006. 239, N 2. P. 415-424. CrossRef PubMed
  48.  
  49. Funk R.H., Monsees T., Ozkucur N. Electromagnetic effects From cell biology to medicine . Prog. Histochem. and Cytochem.- 2009. 43, N 4. P. 177-264. CrossRef PubMed
  50.  
  51. Grundler W., Kaiser F., Keilmann F., Walleczek J. Mechanisms of electromagnetic interaction with cellular systems . Naturwissenschaften 1992. 79. P. 5551-5597. CrossRef PubMed
  52.  
  53. Guiasola C., Desco M., Millan O., Villanueva F.J., Garcia-Barreno P. Biological dosimetry of magnetic resonance imaging . J. Magn. Reson. Imaging. 2002. 15, N 5. P. 584-590. CrossRef PubMed
  54.  
  55. Hafeli U. Magnetically modulated therapeutic systems . Int. J. Pharmacol. 2004. 277, N 1-2. P. 19-24. CrossRef.1016/S0378-5173(04)00127-9
  56.  
  57. Higashi T., Yamagishi A., Takeuchi A., Kawaguchi N., Sagawa S., Onishi S., Date M. Orientation of erythrocytes in a strong static magnetic feld . Blood. 1993. 82. P.1328-1333. CrossRef PubMed
  58.  
  59. Hirai T., Nakamichi N., Yoneda Y. Activator protein-1 complex expressed by magnetism in cultured rat hippocampal neurons . Biochem. and Biophys. Res. Commun. 2002. 292, N 1. P. 200-207. CrossRef PubMed
  60.  
  61. Hiraoka M., Miyakoshi J., Li Y.P., Shung B. Takebe H., Abe M. Induction of c-fos gene expression by exposure to a static magnetic feld in HeLaS3 cells . Cancer Res. 1992. 52, N 23. P. 6522-6524.
  62.  
  63. Hirose H., Nakahara T., Zhang Q.M., Yonei S., Miyakoshi J. Static magnetic feld with a strong magnetic feld gradient (41.7 T. m) induces c-Jun expression in HL-60 cells . In Vitro Cell Dev. Biol. Anim. 2003. 39, N 8-9. P. 348-352. CrossRef.1290/1543-706X(2003)039<0348:SMFWAS>2.0.CO;2
  64.  
  65. ICNIRP. Exposure to static and low frequency electromagnetic fields. In: Biological effects and health consequences (0-100 kHz) . Matthes R., McKinlay A.F., Bernhardt J.H., Vecchia P., Veyret B. (Eds.). Munchen, Markl-Druck, 2003.
  66.  
  67. Iino M., Okuda Y. Osmolality dependence of erythrocyte sedimentation and aggregation in a strong magnetic feld . Bioelectromagnetics. 2001. 22, N 1. P. 46-52. CrossRef.1002/1521-186X(200101)22:1<46::AID-BEM5>3.0.CO;2-0
  68.  
  69. Ikehata M., Koana T., Suzuki Y., Shimizu H., Nakagawa M. Mutagenicity and co-mutagenicity of static magnetic felds detected by bacterial mutation assay . Mutat. Res. 1999. 427. P. 147-150. CrossRef.1016/S0027-5107(99)00087-1
  70.  
  71. Kittel C. Introduction to solid state physics. New York: Wiley, 1996. 689 p.
  72.  
  73. Kotani H., Kawaguchi H., Shimoaka T. Iwasaka M., Ueno S., Ozawa H., Nakamura K., Hoshi K. Strong static magnetic feld stimulates bone formation to a defnite orientation in vitro and in vivo . J. Bone. Miner. Res. 2002. 17, N 10. P. 1814-1821.
  74. CrossRef PubMed  
  75. Kovacs-Balint Z., Csatho A., Laszlo J.F., Juhasz P., Hernadi I. Exposure to an inhomogeneous static magnetic feld increases thermal pain threshold in healthy human volunteers . Bioelectromagnetics. 2011. 32, N 2. P. 131-139. CrossRef PubMed
  76.  
  77. Le Chapellier P., Matta B. Cellular perception and static magnetic felds active penetration depth for pain magnetotherapy . PIERS Online. 2010. 6, N 3. P. 287-292. CrossRef
  78.  
  79. Lin S.L., Chang W.J., Chiu K.H., Hsieh S.C., Lee S.Y., Lin C.T., Chen C.C., Huang H.M. Mechanobiology of MG63 osteoblast-like cells adaptation to static magnetic forces . Electromagn. Biol. Med. 2008. 27, N 1. P. 55-64. CrossRef PubMed
  80.  
  81. McCann J., Dietrich F., Rafferty C., Martin A. A critical review of the genotoxic potential of electric and magnetic felds . Mutat. Res. 1993. 297. P. 61-95. CrossRef.1016/0165-1110(93)90008-B
  82.  
  83. Minelli C., Lowe S. B., Stevens M.M. Engineering nanocomposite materials for cancer therapy . Small. 2010. 6. P. 2336-2357. CrossRef PubMed
  84.  
  85. Miyakoshi J. The review of cellular effects of a static magnetic feld . Sci. and Technol. Advan. Mat. 2006. 7, N 4. P. 305-307. CrossRef
  86.  
  87. Miyamoto H., Yaaguchi H., Ikehara T. Kinouchi Y. Effects of electromagnetic felds on K+ (Rb+) uptake by HeLa cells. In: Biological effects of magnetic and electromagnetic felds (ed. Ueno S.). New York: Plenum press, 1996. P. 101-119. CrossRef.1007/978-0-585-31661-1_7
  88.  
  89. Mohtat N., Cozens F.L., Hancock-Chen T., Scaiano J.C., McLean J., Kim J. Magnetic feld effects on the behavior of radicals in protein and DNA environments . Photochem. Photobiol. 1998. 67, N 1. P. 111-118. CrossRef PubMed
  90.  
  91. Morris C.E., Skalak T.C. Chronic static magnetic feld exposure alters microvessel enlargement resulting from surgical intervention . J. Appl. Physiol. 2007. 103. P. 629-636. CrossRef PubMed
  92.  
  93. Nossol B., Buse G., Silny J. Infuence of weak static and 50 Hz magnetic felds on the redox activity of cytochrome-C oxidase . Bioelectromagnetics. 1993 14, N 4. P. 361-372. CrossRef PubMed
  94.  
  95. Nygren P. , Larsson R. Overview of the clinical effcacy of investigational anticancer drugs . J. Int. Med. 2003. 53, N 2. P. 46-75. CrossRef PubMed
  96.  
  97. Okano H. Effects of static magnetic felds in biology: role of free radicals . Front Biosci. 2008. 13. P. 6106-6125. CrossRef PubMed
  98.  
  99. Okazaki M., Seiyama A., Kon K., Maeda N., Shiga T. Boycott effect with vertical cylinder for paramagnetic red blood cells under the inhomogenous magnetic feld . J. Coll. Interface Sci. 1991. 146, N 2. P. 590-593. CrossRef.1016/0021-9797(91)90226-X
  100.  
  101. Pacini S., Aterini S., Pacini P., Ruggerio C., Gulisano M., Ruggerio M. Infuence of static magnetic feld on the antiproliferative effects of vitamin D on human breast cancer cells . Oncol. Res. 1999. 11, N 6. P.265-271.
  102.  
  103. Pacini S., Vannelli G.B., Barni T., Ruggerio M., Sardi I., Pacini P., Gulisano M. Effect of 0.2 T static magnetic feld on human neurons: remodeling and inhibition of signal transduction without genome instability . Neurosci. Lett. 1999. 267, N 3. P.185-188. CrossRef.1016/S0304-3940(99)00362-6
  104.  
  105. Papatheofanis F.J. Papatheofanis B.J. Short-term effect of exposure to intense magnetic felds on hematologic indices of bone metabolism . Invest. Radiol. 1989. 24, N 3. P. 221-223. CrossRef PubMed
  106.  
  107. Park J.W. Liposome-based drug delivery in breast cancer treatment . Breast Cancer Res. 2002. 4. P. 95-99. CrossRef PubMed PubMedCentral
  108.  
  109. Polyak B., Friedman G. Magnetic targeting for site-specifc drug delivery: applications and clinical potential . Exp. Opinion on Drug Delivery. 2009. 6, N 1. P. 53-70. CrossRef PubMed
  110.  
  111. Raguz S, Yague E. Resistance to chemotherapy: new treatments and novel insights into an old problem . Br. J. Cancer 2008. 99. P. 387-391. CrossRef PubMed PubMedCentral
  112.  
  113. Ritz T., Thalau P. , Phillips J.B., Wiltschko R., Wiltschko W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass . Nature. 2004. 429. P. 177-180. CrossRef PubMed
  114.  
  115. Rosen A.D. Mechanism of action of moderate-intensity static magnetic fields on biological systems . Cell Biochem. Biophys. 2003. 39, N 2. P. 163-173. CrossRef.1385/CBB:39:2:163
  116.  
  117. Rosen A.D. Studies on the Effect of Static Magnetic Fields on Biological Systems . PIERS Online. 2010. 6, N 2. P. 133-136. CrossRef
  118.  
  119. Ruggiero M. Static magnetic felds, blood and genes. An intriguing relationship . Cancer Biol. & Therapy. 2008. 7, N 4. P. 1-2. CrossRef PubMed
  120.  
  121. Saunders R. Effects of static magnetic felds relevant to human health . Progr. in Biophys. and Molec. Biol. 2005. 87, N 2-3. P. 225-239. CrossRef PubMed
  122.  
  123. Sonnier H. Kolomytkin O., Marino A. Action potentials from human neuroblastoma cells in magnetic felds . Neurosci. Lett. 2003. 337, N 3. P. 163-166. CrossRef.1016/S0304-3940(02)01329-0
  124.  
  125. Suzuki Y. , Ikehata M., Nakamura K., Nishioka M., Asanuma K., Koana T., Shimizu H. Induction of micronuclei in mice exposed to static magnetic felds . Mutagenesis. 2001. 16, N 6. P. 499-501. CrossRef PubMed
  126.  
  127. Teodori L., Grabarek J., Smolewski P. Ghibelli. L., Bergamaschi A., de Nicola M., Darzynkewicz Z. Exposure of cells to static magnetic feld accelerates loss of integrity of plasma membrane during apoptosis . Cytometry. 2002. 49, N 3. P. 113-118. CrossRef PubMed
  128.  
  129. Tofani S., Barone D., Cintorino M., de Santi M.M., Ferrara A., Orlassino R., Ossola P., Peroglio F., Rolfo K., Ronchetto F. Static and ELF magnetic felds induce tumor growth inhibition and apoptosis. Bioelectromagnetics. 2001. 22, N 6. P. 419-428. CrossRef PubMed
  130.  
  131. Torbet J., Ronziere M.-C. Magnetic alignment of collagen during self-assembly . Biochem. J. 1984. 219. P. 1057-1060. CrossRef PubMed PubMedCentral
  132.  
  133. WHO, Environmental Health Criteria 232. Static Fields. WHO, 2006. 369 p.
  134.  
  135. Xu C., Fan Z., Chao Y.-L., Du L., Zhang F.Q. Magnetic fields of 10mT and 120mT change cell shape and structure of F-actins of periodontal ligament cells . Bioelectrochemistry. 2008. 72, N 1. P. 41-46. CrossRef PubMed
  136.  
  137. Yang J., Lee J., Kang J, Oh S.J., Ko H.-J., Son J.-H., Lee K., Suh J.S., Huh J.M. Smart Drug-Loaded Polymer Gold Nanoshells for Systemic and Localized Therapy of Human Epithelial Cancer . Advanc. Mater. 2009. 21, N 43. P. 4339-4342. CrossRef PubMed
  138.  
  139. Zhang Q.M., Tokiwa M., Doi T., Nakahara T., Chang P.W., Nakamura N., Hori M., Miyakoshi J., Yonei S. Strong static magnetic feld and the induction of mutations through elevated production of reactive oxygen species in Escherichia coli soxR . Int. J. Radiat. Biol. 2003. 79. P.281-286. CrossRef PubMed
  140.  
  141. Zmyslony M., Palus J., Jajte J., Dziubaltowska E.Rajkowska E. DNA damage in rat lymphocytes treated in vitro with iron cations and exposed to 7 mT magnetic felds (static or 50 Hz) . Mutat. Res. 2000. 453. P. 89-96. CrossRef.1016/S0027-5107(00)00094-4
  142.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.