Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2012; 58(3): 85-94


Evaluation of biological effects and possible mechanisms of action of static magnetic field

Chekhun VF, Demash DV, Nalieskina LA.

    R.E. Kavetsky institute of experimental pathology,oncology and radiobiology, NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz58.03.085

Abstract

Modern views on mechanisms of interaction between static magnetic feld and cells or cellular structures are reviewed. An analysis of the data about possible biotropic effects of this factor was performed. The emphasis was put on the analysis of the studies in which moderate (0.1–1 T) static magnetic felds were used, because such felds are used for targeted delivery of magnetosensitive nanocomposites in development of new strategies in target therapy of patients with malignant neoplasms. Based on available data it was concluded that the primary cause of changes in cells after incubation in external static magnetic feld is disruption of free radical metabolism and elevation of their concentration. Such disruption causes oxidative stress, and, as a result, damages ion channels, leading to changes in cell morphology and expression of different genes and proteins, and also changes in apoptosis and proliferation.

Keywords: постоянное магнитное поле, свободно-радикальные процессы, кальций, ионные каналы.

References

  1. Berezov T.T., Yaglova N.V., Dmitrieva T.B., Chekhonin V.P., Zhirkov Yu.A. Directional transport of drugs using liposomes . Vestn. Grew up. Acad. medical sciences. 2004. 3. P. 42-46.
  2.  
  3. Bingi V.N., Savin A.V. Physical problems of the action of weak magnetic fields on biological systems . Successes. physical sciences. 2003. 173. P. 265-300.
  4.  
  5. Weiner L.M., Podoplelov A.V., Leshina T.V. Influence of a magnetic field on the rate of decomposition of H2O2 by a cathode and EDTA complex with Fe3 + . Biophysics. 1978. 23, No. 2. P. 234-241.
  6.  
  7. Gulyar S.A., Limansky Yu.P. Permanent magnetic fields and their application in medicine. K .: Institute of Physiology named after A.A. Bogomolets NAS of Ukraine, 2005 . 320 p.
  8.  
  9. Heard K.M. The variety of types of magnetic ordering in solids . Usp. Fiz. 1984. 142, No. 2. P. 331-357. CrossRef  
  10. Chekhun V.F., Gorobets S.V., Gorobets O.Yu. Magneto-disordered endogenous entrainment and the problem of fasting permanent magnetic fields in a biosystem . Biofizich. Visn. 2010. 29, No. 2. P. 123-130.
  11.  
  12. Chekhun V.F., Shishova Yu.V. Modern views on the mechanisms of formation of drug resistance of tumors . Oncology. 2000. 2, No. 1-2. P. 11-15.
  13.  
  14. Shpak A.P., Gorbik P.P., Chekhun V.F. Nanocomposites of biomedical applications based on ultrafine magnetite. In: Physical chemistry of nanocomposites and supramolecular structures: Sat. tr . Ed. A.P. Shpaka, P.P. Humpback. K .: Science. Dumka, 2007. P. 45-87.
  15.  
  16. Andresen T. L., Jensen S. S., Jorgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specifc drug release . Prog. Lipid Res. 2005. 44. P. 68-97. CrossRef PubMed
  17.  
  18. Aoki H., Yamazaki H., Yohino T. Akagi T. Effects of static magnetic felds on membrane permeability of a cultured cell line . Res. Commun. Chem. Pathol. Pharmacol. 1990. 69, N 1. P. 103-106.
  19.  
  20. Arosio P., Levi S. Ferritin, iron homeostasis, and oxidative damage . Free Radic. Biol. Med. 2002. 33. P. 457-463. CrossRef  
  21. Ayrapetyan S.N., Grigirian K.V., Avanesian A.S., Stambolstian K.V. Magnetic fields alter electrical properties of solutions and their physiological effects . Bioelectromagnetics. 1994. 15, N 2. P. 133-142. CrossRef PubMed
  22.  
  23. Azanza M.J., Del Moral A. Cell membrane biochemistry and neurobiological approach to biomagnetism . Prog. Neurobiol. 1994. 44, N 6. P. 517-601. CrossRef  
  24. Berridge M.J. Unlocking the secrets of cell signaling . Annu. Rev. Physiol. 2005. 67. P. 1-21. CrossRef PubMed
  25.  
  26. Beu T.A. Simulations of Biological Ion Channels in Intense Magnetic Fields . Physica. 2004. 49. P. 91-97.
  27.  
  28. Blumenthal N.C., Ricci J., Breger L., Zychlinsky A., Solomon H., Chen G.G., Kuznetsov D., Dorfman R. Effects of low-intensity AC and. or DC electromagnetic felds on cell attachment and induction of apoptosis . Bioelectromagnetics. 1997. 18, N 3. P. 264-272. CrossRef  
  29. Carson J.J., Prato F.S., Drost D.J. Diesbourg L.D, Dixon S.J. Time-varying magnetic felds increase cytosolic free Ca2+ in HL-60 cells . Amer. J. Physiol. 1990. 259. P. 687-692. CrossRef PubMed
  30.  
  31. Dobson J. Magnetic nanoparticles for drug delivery . Drug Develop. Res. 2006. 67, N 1. P. 55-60. CrossRef  
  32. Eveson R.W., Timmel C.R., Brocklehurst B. Hore P.J., McLauchlan K.A. The effects of weak magnetic felds on radical recombination reactions in micelles . Int. J. Radiat. Biol. 2000. 76, N 11. P.1509-1522. CrossRef PubMed
  33.  
  34. Fanelli C., Coppola S., Barone R. Colussi C., Gualandi G., Volpe P., Ghibelli L. Magnetic felds increase cell survival by inhibiting apoptosis via modulation of Ca2+ infux . FASEB J. 1999. 13, N 1. P. 95-102. CrossRef PubMed
  35.  
  36. Fenske D.B. Cullis P.R. Liposomal nanomedicinas . Exp. Opin Drug Deliv. 2008. 5, N 5. P. 25-44. CrossRef PubMed
  37.  
  38. Feynman R.P., Leighton R., Sands M. The Feynman lectures on physics, USA: Addison-Wesley. Vol. 2. 1963. Ch. 37.
  39.  
  40. Forcada A., Suarez I., Fernandez B. Acute and chronic effects of exposure to a 1-mT magnetic feld on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture . Environmental. Res. 2005. 98, N 3. P. 355-362. CrossRef PubMed
  41.  
  42. Fortin-Ripoche J.-P., Martina M.S., Gazeau F., Menager C., Wil helm C., Bacri J.C., Lesieur S., Clement O. Magnetic Targeting of Magnetoliposomes to Solid Tumors with MR Imaging Monitoring in Mice: Feasibility . Radiology. 2006. 239, N 2. P. 415-424. CrossRef PubMed
  43.  
  44. Funk R.H., Monsees T., Ozkucur N. Electromagnetic effects From cell biology to medicine . Prog. Histochem. and Cytochem.- 2009. 43, N 4. P. 177-264. CrossRef PubMed
  45.  
  46. Grundler W., Kaiser F., Keilmann F., Walleczek J. Mechanisms of electromagnetic interaction with cellular systems . Naturwissenschaften 1992. 79. P. 5551-5597. CrossRef PubMed
  47.  
  48. Guiasola C., Desco M., Millan O., Villanueva F.J., Garcia-Barreno P. Biological dosimetry of magnetic resonance imaging . J. Magn. Reson. Imaging. 2002. 15, N 5. P. 584-590. CrossRef PubMed
  49.  
  50. Hafeli U. Magnetically modulated therapeutic systems . Int. J. Pharmacol. 2004. 277, N 1-2. P. 19-24. CrossRef  
  51. Higashi T., Yamagishi A., Takeuchi A., Kawaguchi N., Sagawa S., Onishi S., Date M. Orientation of erythrocytes in a strong static magnetic feld . Blood. 1993. 82. P.1328-1333. CrossRef PubMed
  52.  
  53. Hirai T., Nakamichi N., Yoneda Y. Activator protein-1 complex expressed by magnetism in cultured rat hippocampal neurons . Biochem. and Biophys. Res. Commun. 2002. 292, N 1. P. 200-207. CrossRef PubMed
  54.  
  55. Hiraoka M., Miyakoshi J., Li Y.P., Shung B. Takebe H., Abe M. Induction of c-fos gene expression by exposure to a static magnetic feld in HeLaS3 cells . Cancer Res. 1992. 52, N 23. P. 6522-6524.
  56.  
  57. Hirose H., Nakahara T., Zhang Q.M., Yonei S., Miyakoshi J. Static magnetic feld with a strong magnetic feld gradient (41.7 T. m) induces c-Jun expression in HL-60 cells . In Vitro Cell Dev. Biol. Anim. 2003. 39, N 8-9. P. 348-352. CrossRef  
  58. ICNIRP. Exposure to static and low frequency electromagnetic fields. In: Biological effects and health consequences (0-100 kHz) . Matthes R., McKinlay A.F., Bernhardt J.H., Vecchia P., Veyret B. (Eds.). Munchen, Markl-Druck, 2003.
  59.  
  60. Iino M., Okuda Y. Osmolality dependence of erythrocyte sedimentation and aggregation in a strong magnetic feld . Bioelectromagnetics. 2001. 22, N 1. P. 46-52. CrossRef  
  61. Ikehata M., Koana T., Suzuki Y., Shimizu H., Nakagawa M. Mutagenicity and co-mutagenicity of static magnetic felds detected by bacterial mutation assay . Mutat. Res. 1999. 427. P. 147-150. CrossRef  
  62. Kittel C. Introduction to solid state physics. New York: Wiley, 1996. 689 p.
  63.  
  64. Kotani H., Kawaguchi H., Shimoaka T. Iwasaka M., Ueno S., Ozawa H., Nakamura K., Hoshi K. Strong static magnetic feld stimulates bone formation to a defnite orientation in vitro and in vivo . J. Bone. Miner. Res. 2002. 17, N 10. P. 1814-1821.
  65. CrossRef PubMed  
  66. Kovacs-Balint Z., Csatho A., Laszlo J.F., Juhasz P., Hernadi I. Exposure to an inhomogeneous static magnetic feld increases thermal pain threshold in healthy human volunteers . Bioelectromagnetics. 2011. 32, N 2. P. 131-139. CrossRef PubMed
  67.  
  68. Le Chapellier P., Matta B. Cellular perception and static magnetic felds active penetration depth for pain magnetotherapy . PIERS Online. 2010. 6, N 3. P. 287-292. CrossRef  
  69. Lin S.L., Chang W.J., Chiu K.H., Hsieh S.C., Lee S.Y., Lin C.T., Chen C.C., Huang H.M. Mechanobiology of MG63 osteoblast-like cells adaptation to static magnetic forces . Electromagn. Biol. Med. 2008. 27, N 1. P. 55-64. CrossRef PubMed
  70.  
  71. McCann J., Dietrich F., Rafferty C., Martin A. A critical review of the genotoxic potential of electric and magnetic felds . Mutat. Res. 1993. 297. P. 61-95. CrossRef  
  72. Minelli C., Lowe S. B., Stevens M.M. Engineering nanocomposite materials for cancer therapy . Small. 2010. 6. P. 2336-2357. CrossRef PubMed
  73.  
  74. Miyakoshi J. The review of cellular effects of a static magnetic feld . Sci. and Technol. Advan. Mat. 2006. 7, N 4. P. 305-307. CrossRef  
  75. Miyamoto H., Yaaguchi H., Ikehara T. Kinouchi Y. Effects of electromagnetic felds on K+ (Rb+) uptake by HeLa cells. In: Biological effects of magnetic and electromagnetic felds (ed. Ueno S.). New York: Plenum press, 1996. P. 101-119. CrossRef  
  76. Mohtat N., Cozens F.L., Hancock-Chen T., Scaiano J.C., McLean J., Kim J. Magnetic feld effects on the behavior of radicals in protein and DNA environments . Photochem. Photobiol. 1998. 67, N 1. P. 111-118. CrossRef PubMed
  77.  
  78. Morris C.E., Skalak T.C. Chronic static magnetic feld exposure alters microvessel enlargement resulting from surgical intervention . J. Appl. Physiol. 2007. 103. P. 629-636. CrossRef PubMed
  79.  
  80. Nossol B., Buse G., Silny J. Infuence of weak static and 50 Hz magnetic felds on the redox activity of cytochrome-C oxidase . Bioelectromagnetics. 1993 14, N 4. P. 361-372. CrossRef PubMed
  81.  
  82. Nygren P. , Larsson R. Overview of the clinical effcacy of investigational anticancer drugs . J. Int. Med. 2003. 53, N 2. P. 46-75. CrossRef PubMed
  83.  
  84. Okano H. Effects of static magnetic felds in biology: role of free radicals . Front Biosci. 2008. 13. P. 6106-6125. CrossRef PubMed
  85.  
  86. Okazaki M., Seiyama A., Kon K., Maeda N., Shiga T. Boycott effect with vertical cylinder for paramagnetic red blood cells under the inhomogenous magnetic feld . J. Coll. Interface Sci. 1991. 146, N 2. P. 590-593. CrossRef  
  87. Pacini S., Aterini S., Pacini P., Ruggerio C., Gulisano M., Ruggerio M. Infuence of static magnetic feld on the antiproliferative effects of vitamin D on human breast cancer cells . Oncol. Res. 1999. 11, N 6. P.265-271.
  88.  
  89. Pacini S., Vannelli G.B., Barni T., Ruggerio M., Sardi I., Pacini P., Gulisano M. Effect of 0.2 T static magnetic feld on human neurons: remodeling and inhibition of signal transduction without genome instability . Neurosci. Lett. 1999. 267, N 3. P.185-188. CrossRef  
  90. Papatheofanis F.J. Papatheofanis B.J. Short-term effect of exposure to intense magnetic felds on hematologic indices of bone metabolism . Invest. Radiol. 1989. 24, N 3. P. 221-223. CrossRef PubMed
  91.  
  92. Park J.W. Liposome-based drug delivery in breast cancer treatment . Breast Cancer Res. 2002. 4. P. 95-99. CrossRef PubMed PubMedCentral
  93.  
  94. Polyak B., Friedman G. Magnetic targeting for site-specifc drug delivery: applications and clinical potential . Exp. Opinion on Drug Delivery. 2009. 6, N 1. P. 53-70. CrossRef PubMed
  95.  
  96. Raguz S, Yague E. Resistance to chemotherapy: new treatments and novel insights into an old problem . Br. J. Cancer 2008. 99. P. 387-391. CrossRef PubMed PubMedCentral
  97.  
  98. Ritz T., Thalau P. , Phillips J.B., Wiltschko R., Wiltschko W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass . Nature. 2004. 429. P. 177-180. CrossRef PubMed
  99.  
  100. Rosen A.D. Mechanism of action of moderate-intensity static magnetic fields on biological systems . Cell Biochem. Biophys. 2003. 39, N 2. P. 163-173. CrossRef  
  101. Rosen A.D. Studies on the Effect of Static Magnetic Fields on Biological Systems . PIERS Online. 2010. 6, N 2. P. 133-136. CrossRef  
  102. Ruggiero M. Static magnetic felds, blood and genes. An intriguing relationship . Cancer Biol. & Therapy. 2008. 7, N 4. P. 1-2. CrossRef PubMed
  103.  
  104. Saunders R. Effects of static magnetic felds relevant to human health . Progr. in Biophys. and Molec. Biol. 2005. 87, N 2-3. P. 225-239. CrossRef PubMed
  105.  
  106. Sonnier H. Kolomytkin O., Marino A. Action potentials from human neuroblastoma cells in magnetic felds . Neurosci. Lett. 2003. 337, N 3. P. 163-166. CrossRef  
  107. Suzuki Y. , Ikehata M., Nakamura K., Nishioka M., Asanuma K., Koana T., Shimizu H. Induction of micronuclei in mice exposed to static magnetic felds . Mutagenesis. 2001. 16, N 6. P. 499-501. CrossRef PubMed
  108.  
  109. Teodori L., Grabarek J., Smolewski P. Ghibelli. L., Bergamaschi A., de Nicola M., Darzynkewicz Z. Exposure of cells to static magnetic feld accelerates loss of integrity of plasma membrane during apoptosis . Cytometry. 2002. 49, N 3. P. 113-118. CrossRef PubMed
  110.  
  111. Tofani S., Barone D., Cintorino M., de Santi M.M., Ferrara A., Orlassino R., Ossola P., Peroglio F., Rolfo K., Ronchetto F. Static and ELF magnetic felds induce tumor growth inhibition and apoptosis. Bioelectromagnetics. 2001. 22, N 6. P. 419-428. CrossRef PubMed
  112.  
  113. Torbet J., Ronziere M.-C. Magnetic alignment of collagen during self-assembly . Biochem. J. 1984. 219. P. 1057-1060. CrossRef PubMed PubMedCentral
  114.  
  115. WHO, Environmental Health Criteria 232. Static Fields. WHO, 2006. 369 p.
  116.  
  117. Xu C., Fan Z., Chao Y.-L., Du L., Zhang F.Q. Magnetic fields of 10mT and 120mT change cell shape and structure of F-actins of periodontal ligament cells . Bioelectrochemistry. 2008. 72, N 1. P. 41-46. CrossRef PubMed
  118.  
  119. Yang J., Lee J., Kang J, Oh S.J., Ko H.-J., Son J.-H., Lee K., Suh J.S., Huh J.M. Smart Drug-Loaded Polymer Gold Nanoshells for Systemic and Localized Therapy of Human Epithelial Cancer . Advanc. Mater. 2009. 21, N 43. P. 4339-4342. CrossRef PubMed
  120.  
  121. Zhang Q.M., Tokiwa M., Doi T., Nakahara T., Chang P.W., Nakamura N., Hori M., Miyakoshi J., Yonei S. Strong static magnetic feld and the induction of mutations through elevated production of reactive oxygen species in Escherichia coli soxR . Int. J. Radiat. Biol. 2003. 79. P.281-286. CrossRef PubMed
  122.  
  123. Zmyslony M., Palus J., Jajte J., Dziubaltowska E.Rajkowska E. DNA damage in rat lymphocytes treated in vitro with iron cations and exposed to 7 mT magnetic felds (static or 50 Hz) . Mutat. Res. 2000. 453. P. 89-96. CrossRef  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.