Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2012; 58(2): 89-100

Hypoxic pulmonary hypertension: modern views on pathogenesis and options for rational pharmacological correction

Strielkov IeV, Frantsuzova SB, Khromov OS.

  1. State Institution "Institute of pharmacology and toxicology" of the NAMS of Ukraine
  2. O.O. Bogomoletz Institute of Physiology of the NAS of Ukraine, Ukraine


In the article, an analysis of the modern approaches to pharmacological correction of hypoxic pulmonary hyper­tension in conjunction with its development mechanisms has been performed. Promising research trends for the creation of new drugs in this field have also been reviewed. Key words: hypoxic pulmonary hypertension, hypoxia, endothelium, reactive oxygen species, liposomes.

Keywords: hypoxic pulmonary hypertension, hypoxia,endothelium, reactive oxygen species, liposomes.


  1. Martyniuk TV, Konosova ID, Chazova IE Modern approaches to drug treatment of pulmonary hypertension . Consilium Med. 2003. N 5. P. 83-86.
  3. Solovyov AI, Tishkin SM., Khromov OS, Stefanov OV The contractile function of blood vessels in hypertension of different origins and its correction by phosphatidylcholine liposomes . Fiziol. Zh. 2002. 48. N 6. P 11-17.
  5. Strelkov SV., Khromov OS Mechanism of development of hypoxic pulmonary hypertension and its pharmacological correction . Pharmacology and physician. toxicology. 2009. 11. N 4. P 20-25.
  7. Khromov OS, Solovyov AI Experimental justification for the use of phosphatidylcholine liposomes in medicine . Pharmacology and physician. toxicology. 2008. N 4-5. p.  88-98.
  9. Aaronson P.I., Robertson T.P., Ward J.P. Endothelium-derived mediators and hypoxic pulmonary vasocon­striction . Respir. Physiol. Neurobiol. 2002. 132. P. 107-120. CrossRef  
  10. Adibhatla R.M., Hatcher J.F., Dempsey R.J. Cytidine-52-diphosphocholine (CDP-choline) affects CTP: phosphocholine cytidylyltransferase and lyso-phosphatidylcholine after transient brain ischemia . J. Neurosci. Res. 2004. 76. P. 390-396. CrossRef PubMed
  12. Archer S.L., J. Huang, Henry T., Peterson D., Weir E.K. A redox-based O sensor in rat pulmonary vasculature . Circulat. Res. 1993. 73. P. 1100-1112. CrossRef PubMed
  14. Archer S., Michelakis E. The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox O sensors, and controversies . News Physiol. Sci. 20202. 17. P. 131-137. CrossRef PubMed
  16. Baillie J.K, Thompson A.A.R., Irving J.B., Bates M.G.D., Sutherland A.I., MacNee W., Maxwell S.R.J., Webb D.J. Oral antioxidant supplementation does not prevent acute mountain sickness: double blind, randomized placebo-controlled trial . Q.J.M. 2009. 102. P. 341-348. CrossRef PubMed
  18. Bhat G.B., Block E.R. Effect of hypoxia on phospho­lipid metabolism in porcine pulmonary artery endothelial cells . Amer. J. Physiol. Lung Cell Mol. Physiol. 1992 262. P. L606-L613. CrossRef PubMed
  20. Bigatello L.M., Hurford W.E., Kacmarek R.M., Roberts J.D., Zapol W.M. Prolonged inhalation of ni­tric oxide in patients with severe adult respiratory dis­tress syndrome . Anesthesiology. 1994. 80. P. 761-770. CrossRef PubMed
  22. Blythe D., van Heerden P.V. The pulmonary circula­tion and selective pulmonary vasodilators [Elekt­ronnii resurs] . Anaesthetist. 1999.
  24. Chandel N.S., Schumacker P.T. Cellular oxygen sens­ing by mitochondria: old questions, new insight . J. Appl. Physiol. 2000. 88. P. 1880-1889. CrossRef PubMed
  26. Chang S.W., Stelzner T.J., Weil J.V., Voelkel N.F. Hy­poxia increases plasma glutathione disulfide in rats . Lung. 1989. 167. N 5. P. 269-276. CrossRef PubMed
  28. Clutton-Brock J. Two cases of poisoning by contami­nation of nitrous oxide with the higher oxides of nitro­gen during anaesthesia . Brit. J. Anaesth. 1967. 39. P. 388-392. CrossRef PubMed
  30. Cohen A. H., Hanson K., Morris K., Fouty B., McMurty I. F., Clarke W., Rodman D.M. Inhibition of cyclic 3'-5'-guanosine monophosphate-specific phosphodiesterase selectively vasodilates the pulmo­nary circulation in chronically hypoxic rats . J. Clin. Invest. 1996. 97. P. 172-179. CrossRef PubMed PubMedCentral
  32. Conzen P., Goetz A., Oettinger W., Brendel W. Hy-poxic pulmonary vasoconstriction and endogenous prostaglandin and thromboxane release in anesthetized pigs . Biomed Biochim Acta. 1984. 43. P. S265- S268.
  34. Cornfield D.N., Stevens T., McMurtry I.F., Abman S.H., Rodman D.M. Acute hypoxia increases cytosolic calcium in fetal pulmonary artery smooth muscle cells . Amer. J. Physiol. 1993. 265. P. L53-L56. CrossRef PubMed
  36. 19. Deleuze P.H., Adnot S., Shiiya N., Thoraval R.F., Eddahibi S., Braquet P. , Chabrier P.E., Loisance D.Y. Endothelin dilates bovine pulmonary circulation and reverses hypoxic pulmonary vasoconstriction . J. Cardiovasc. Pharmacol. 1992. 19. P. 354-360. CrossRef PubMed
  38. 20. Du W., Frazier M., McMahon T.J., Eu J.P. Redox Activation of Intracellular Calcium Release Channels (Ryanodine Receptors) in the Sustained Phase of Hypoxia-Induced Pulmonary Vasoconstriction . Chest. 2005. 128. P. 556S-558S. CrossRef PubMed
  40. Eddahibi1 S., Hanoun N., Lanfumey L., Lesch K.P., Raffestin B., Hamon M., Adnot S. Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene . J. Clin. Invest. 2000. 105. P. 1555-1562. CrossRef PubMed PubMedCentral
  42. Edwards A. D. The pharmacology of inhaled nitric oxide . Arch. Dis. Child. 1995. 72. P. F127-F130. CrossRef PubMed PubMedCentral
  44. Gaine S.P., Hales A., Flavahan N.A. Hypoxic pulmonary endothelial cells release a diffusible contractile factor distinct from endothelin . Amer. J. Physiol. Lung Cell Mol. Physiol. 1998. 274. P. L657-L664. CrossRef PubMed
  46. Gonzalez C., Sanz-Alfayate G., Agapito M. T., Gomez-Nino A., Rocher A., Obeso A. Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia . Respir. Physiol. Neurobiol. 2002. 132. P. 17-41. CrossRef  
  47. Greenberg B., Kishiyama S. Endothelium-dependent and independent responses to severe hypoxia in rat pulmonary artery . Amer. J. Physiol. Heart Circ. Physiol. 1993. 265. P. H1712-H1720. CrossRef PubMed
  49. Gurney A. M.Multiple sites of oxygen sensing and their contributions to hypoxic pulmonary vasocon-striction . Respir. Physiol. Neurobiol. 2002. 132. P. 43-53. CrossRef  
  50. Hampl V. , Tristani-Firouzi M., Nelson D.P., Archer S.L. Chronic infusion of nitric oxide in experimental pulmonary hypertension: pulmonary pressure-flow analysis . European Respiratory Journal. 1996. 9. P. 1475-1481. CrossRef PubMed
  52. Hampl V. , Herget J. Role of Nitric Oxide in the Pathogenesis of Chronic Pulmonary Hypertension . Physiol. Rev. 2000. 80. P. 1337-1372. CrossRef PubMed
  54. Hasunuma K., Rodman D. M., O'Brien R. F., McMurtry I. F. Endothelin 1 causes pulmonary vasodilation in rats . Amer. J. Physiol. Heart Circ. Physiol. 1990. 259. P. H48-H54. CrossRef PubMed
  56. Hill N. Therapeutic options for the treatment of pul­monary hypertension [Elektronnii resurs] . Medscape Pulmonary Medicine. 2005. 9. N 2.
  58. Hodyc D., Snorek M., Brtnicky T., Herget J. Superox­ide dismutase mimetic tempol inhibits hypoxic pul­monary vasoconstriction in rats independently of ni­tric oxide production . Exp. Physiol. 2007. 92. P. 945-951. CrossRef PubMed
  60. Hoshikawa Y., Ono1 S., Suzuki S., Tanita T., Chida M., Song C, Noda M., Tabata T., Voelkel N.F., Fujimura S. Generation of oxidative stress contributes to the development of pulmonary hypertension induced by hypoxia . J. Appl. Physiol. 2001. 90. P. 1299-1306. CrossRef PubMed
  62. Joppa P., Petr6jbov6 D., StannGk B., Dorkov6 Z., Tk6Hov6 R. Oxidative stress in patients with COPD and pulmonary hypertension . Wiener Klinische Wochenschrift. 2007. 119. P. 428-434. CrossRef PubMed
  64. Kao P.N. Simvastatin treatment of pulmonary hypertension: an observational case series . Chest. 2005. 127. P. 1446-1452. CrossRef  
  65. Kato M., Staub N.C. Response of small pulmonary arteries to unilobar hypoxia and hypercapnia . Circ. Res. 1966. 19. P. 426-440. CrossRef PubMed
  67. Knock G.A., Snetkov V.A., Shaifta Y., Connolly M., Drndarski S., Noah A., Pourmahram G.E., Becker, S. Aaronson P.I., Ward J.P. Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca2+ sensitization . Free Radic. Biol. Med. 2009. 46. P. 633-642. CrossRef PubMed PubMedCentral
  69. Langleben D., Christman B.W., Barst R.J. Effects of the thromboxane synthetase inhibitor and receptor antagonist terbogrel in patients with primary pulmonary hypertension . Amer. Heart J. 2000. 143. P. E4. CrossRef PubMed
  71. Leach R. M., Hill H.S., Snetkov V.A., Ward J.P. Hypoxia, energy state and pulmonary vasomotor tone, Respir . Physiol. Neurobiol. 2002. 132. P. 55-67. CrossRef  
  72. Leach R.M., Hill H.S., Snetkov V.A., Robertson T.P., Ward J.P.T. Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor . J. Physiol. 2001. 536. P. 211-224. CrossRef PubMed PubMedCentral
  74. Leach R.M., Robertson T.P., Twort C.H.C. Hypoxic vasoconstriction in rat pulmonary and mesenteric arteries . Amer. J. Physiol. Lung Cell Mol. Physiol. 1994. 266. P. L223-L231. CrossRef PubMed
  76. Littler C.M., Morris K.G., Fagan K.A., McMurtry I.F., Messing R.O., Dempsey E.C. Protein kinase C-epsilon-null mice have decreased hypoxic pulmonary vasoconstriction . Amer. J. Physiol. Heart Circ. Physiol. 2003. 284. P. H1321-H1331. CrossRef PubMed
  78. Liu J.Q., Sham J.S., Shimoda L.A., Kuppusamy P., Sylvester J.T. Hypoxic constriction of porcine distal pulmonary arteries: endothelium and endothelin dependence . Amer. J. Physiol. Lung Cell Mol. Physiol. quinone is the electron donor for superoxide formation by complex III of heart mitochondria . Arch. Biochem. Biophys. 1985. 237. P. 408-414.
  80. Uzuna Ts., Balbayb Ts., 3omunogluc N. b., Yavuzd Ts., Annakkayab A.N., Gblerd S., Silana C, Erbaee M., Arbak P. Hypobaric-hypoxia-induced pulmonary damage in rats ameliorated by antioxidant erdosteine . Acta Histochemica. 2006. 108. P. 59 68. CrossRef PubMed
  82. Vadula M.S., Kleinman J.G., Madden J.A. Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes . Amer. J. Physiol. 1993. 265. P. L591-L597. CrossRef PubMed
  84. Wadsworth R.M. Vasoconstrictor and vasodilator effects of hypoxia . Trends Pharmacol. Sci. 1994. 15. P. 47-53. CrossRef  
  85. Ward J.P.T., Snetkov V.A., Aaronson P.I. Calcium, mitochondria and oxygen sensing in the pulmonary circulation . Cell Calcium. 2004. 36. P. 209-220. CrossRef PubMed
  87. Ward J.P.T., Knock G.A., Snetkov V.A., Aaronson P.I. Protein kinases in vascular smooth muscle tone role in the pulmonary vasculature and hypoxic pulmonary vasoconstriction . Pharmacol. and Therap. 2004. 104. P. 207-231. CrossRef PubMed
  89. Waypa G.B., Marks J.D., Mack M.M., Boriboun C, Mungai P.T., Schumacker P.T. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes . Circulat. Res. 2002. 91. P. 719-726. CrossRef PubMed
  91. Waypa G.B., Chandel N.S., Schumacker P.T. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing . Ibid. 2001. 88. P. 1259-1266. CrossRef PubMed
  93. Weir E.K., Hong Z., Porter V.A., Reeve H.L. Redox signaling in oxygen sensing by vessels . Respir. Physiol. Neurobiol. 2002. 132. P. 121-130. CrossRef  
  94. Weir E.K., Archer S.L. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels . FASEB J. 1995. 9. P. 183-189. CrossRef PubMed
  96. Weissmann N., Sommer N., Schermuly R.T., Ghofrani H.A., Seeger W., Grimminger F. Oxygen sensors in hypoxic pulmonary vasoconstriction . Cardiovascular Res. 2006. 71. N 4. P. 620-629. CrossRef PubMed
  98. Yuan J. Hypoxic pulmonary vasoconstriction: cellular and molecular mechanisms Springer, 2004. P. 268-269. CrossRef  
  99. Zhang F., Carson R.C., Zhang H., Gibson G., Thomas H.M. Pulmonary artery smooth muscle cell [Ca2+] and contraction: responses to diphenyleneiodonium i and hypoxia . Amer. J. Physiol. Lung Cell Mol. Physiol. 1997. 273. P. L603-L611. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.