Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2012; 58(2): 66-79


Contraction properties and musculo-tendinous stiffness of the human triceps surae muscle and their change as a result of a long-term bed-rest

Koriak IuA

    State scientific Center of Russian Federation “ The Institite ofmedical biological problems RAS” Moscow, Russia.
DOI: https://doi.org/10.15407/fz58.02.066


Abstract

The effect of a 120-day 5° head-down tilt (HDT) bed rest on the mechanical properties and electromechanical delay (EMD) of the human triceps surae (TS) muscle was studied in four (mean age 31.5 ± 1.7 yr) healthy young women subjects. The TS mechanical properties were evaluated based on the following indicators: maximal voluntary contraction (MVC), maximal strength (P ; frequency 150 Hz), peak twitch force (P ), time-to-peak tension (TPT), half-relaxation time (1/2 RT) and tension development time to reach 25, 50, 75 and 90 % of maximal tension. Force deficit (P) were estimated. In response to a light signal, the subject was supposed to make a voluntary foot flexion, with the instruction «to exert the fastest and greatest tension». EMD measurements were recorded from each subject during voluntary contraction. Surface electrodes sensed electromyographic (EMG) activity in the soleus muscle. A separate timer was used to determine total reaction time (TRT). Premotor time (PMT) was taken to be the time inter­val from the delivery of the signal to change in EMG. EMD was the time interval between the change in EMG and movement i.e. the time interval between EMG and the onset of muscle tension. After HDT P , MVC and P decreased by 24.4, 36.1 and 11.5 %, respectively, while Pd° increased by 38.8 %. TPT increased by 13.6 %, while 1/2RT decreased by 19.2 %. The rate of increase of voluntary contractions calculated according to a relative scale significantly increased, while the rate of development of electrically evoked contrac­tion did not show any significant differences. The voluntary contraction EMD increased by 27.4 %; PMT by 8.7 %, and TRT by 13.6 %. Thus, the mechanical changes suggest that weightlessness changes not only the peripheral processes as­sociated with contractions but also the central and neural command. EMD is a simple and quick method for evaluation of muscle stiffness changes. Moreover, EMD can serve as an indicator of the functional condition of the neuromuscular sys­tem.

References

  1. Grigoryeva L.S., Kozlovskaya I.B. The effect of weightlessness and hypokinesia on the speed-strength properties of human muscles . Cosm. biology and aerospace. the medicine. 1987. 21. P. 27-30.
  2.  
  3. Koryak Yu.A. The study of the speed and strength properties of the human muscle system. In the book: Reserve. capabilities of the body of athletes . Ed. Karazhanova B.B. Alma-Ata: KazIFK. 1985.-P. 86-97.
  4.  
  5. Koryak Yu.A. Functional and clinical significance of human skeletal muscle architecture . Human Physiology. 2008. 34. P. 102-112. CrossRef  
  6. Hristova L.G., Gidikov A.A., Aslanova I.F., Belyaeva M.G., Kirenskaya A.V., Kozlova V.G., Kozlovskaya I.B. The effect of immersion hypokinesia on the potentials of the motor units of human muscles . Cosm. biology and aerospace. the medicine. 1988. 22.-P. 39-43.
  7.  
  8. Akeson W.H., Amie lD., Abel M.F. Effects of immobilization on joints . Clin. Orthop. 1987. 219. P. 28-37. CrossRef  
  9. Almeida-Silveira M.I., Lambertz D., Pirot C., Goubel F. Changes in stiffness induced by hindlimb suspension in rat Achilles tendon . Eur. J. Appl. Physiol. 2000. 81. P. 252-257. CrossRef PubMed
  10.  
  11. Briggs F.N., Poland J.L., Solard R.J. Relative capabilities of sarcoplasmic reticulum in fast and slow mammalian skeletal muscle . J. Physiol. 1977. 266. P. 587-594. CrossRef PubMed PubMedCentral
  12.  
  13. Canon F., Goubel F. Changes in stiffness induced by hindlimb suspension in rat soleus muscle . Pflbig. Arch. 1995. 429. P. 332-337. CrossRef PubMed
  14.  
  15. Cavanagh P.R., Komi P.V. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions . Eur. J. Appl. Physiol. 1979. 42. P. 159-63. CrossRef PubMed
  16.  
  17. Cmment G., Gurfinkel V.S., Lestienne F. Mechanisms of posture maintenance in weightlessness. In: Vestibular and Visual Control on Posture and Locomotor Equilibrum, (Black I., ed.). Basel, Switzerland: Karger. 1985. P. 158-163. CrossRef  
  18. Close R.I. Dynamic properties of mammalian skeletal muscle . Physiol. Rev. 1972. 52. P. 129-197. CrossRef PubMed
  19.  
  20. Costa P.B., RyanE.D, Herda T.J. Acute effects of passive stretching on the electromechanical delay and evoked twitch properties . Eur. J. Appl. Physiol. 2010. 108. P. 301-310. CrossRef PubMed
  21.  
  22. DeBoerM., Maganaris C.N., Seynnes O.R. Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men . J. Physiol. 2007. 583. P. 1079-1091. CrossRef PubMed PubMedCentral
  23.  
  24. Duchateau J., Hainaut K. Effects of immobilization on contractile properties, recruiment and firing rates of human motor units . Ibid. 1990. 422. P 55-65. CrossRef PubMed PubMedCentral
  25.  
  26. Dudley G.A., Duvoisin M.R., Adams G.R. Adaptation to unilateral lower limb suspension in humans . Aviat. Space Environ. Med. 1992. 63. P. 678-683.
  27.  
  28. Edgerton V.R., Roy R.R. Neuromuscular adaptations to spaceflight. In: Handbook of Physiology. Environmental Physiology. Bethesda, MD: Amer. Physiol. Soc. 1996, 1. Sect. 4. Chapt. 32. P. 721-763.
  29.  
  30. Friedrich J.A., Brand R.A. Muscle fiber architecture in the human lower limb . J. Biomech. 1990. 23. P. 91-95. CrossRef  
  31. GardettoP.R., Schluter J.M., Fitts R.H. Contractile function of single muscle fibers after hindlimb suspension . J. Appl. Physiol. 1989. 66. P. 2739-2749. CrossRef PubMed
  32.  
  33. Goubel F. Changes in mechanical properties of human muscle as a result of spaceflight . Int. J. Sports Med. [Suppl. 4]. 1997. 18. P. S285-S287. CrossRef PubMed
  34.  
  35. Hikida R.S., Gollnick P.D., Dudley G.A. Structural and metabolic characteristics of human skeletal muscle fol­lowing 30 days of simulated microgravity . Aviat. Space Environ. Med. 1989. 60. P. 664-670.
  36.  
  37. Hill A.V The series elastic component of muscle . Proc. R. Sov. 1950. 137. P 273-280. CrossRef PubMed
  38.  
  39. Ichinose Y., Kawakami Y., Ito M., Fukunaga T. Esti­mation of active force-length characteristics of human vastus lateralis muscle . Acta Anat. 1997. 159. P. 78-83. CrossRef PubMed
  40.  
  41. Johnson M.A., Polgar J., Weightman D., Appleton D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study . J. Neurol. Sci. 1973. 18. P. 111-129. CrossRef  
  42. Kawakami Y, Akima H., Kubo K. Changes in muscle size, architecture and neural activation after 20 days of bed rest with and without resistance exercise . Eur. J. Appl. Physiol. 2001. 84. P. 7-12. CrossRef PubMed
  43.  
  44. Kim D.H., Witzmann F.A., Fitts R.H. Effects of disuse on sarcoplasmic reticulum in fast and slow skeletal muscle . Amer. J. Physiol. 1982. 243. P. C156-C160. CrossRef PubMed
  45.  
  46. Kirsch R.F., Boskov D., Rymer W.Z. Muscle stiffness during transient and continuous movements of cat muscle: perturbation characteristics and physiological relevance. . IEEE Trans. Biomed. Eng. 1994. 41. P. 758-770. CrossRef PubMed
  47.  
  48. Komi P.V, Tesch P. EMG frequency spectrum, muscle structure, and fatigue during dynamic contractions in man . Eur. J. Appl. Physiol. 1979. 42. P. 41-50
  49. CrossRef PubMed  
  50. Koryak Yu. Contractile properties of the human triceps surae muscle during simulated weightlessness . Ibid. 1995. 70. P. 344-350
  51. CrossRef PubMed  
  52. Koryak Yu. Electrically evoked and voluntary properties of the human triceps surae muscle: effects of long-term spaceflights . Acta Physiol. Pharmacol. Bulg. 2001. 26. N 1-2. P. 21-27.
  53.  
  54. Koryak Yu. Surface action potential and contractile properties of the human triceps surae muscle: effect of "dry" water immersion . Exp. Physiolog. 2002. 87. P. 101-111.
  55. CrossRef PubMed  
  56. Kubo K., Akima H., Kouzaki M. Changes in the elastic properties of tendon structures following 20 days bed­rest in humans . Eur. J. Appl. Physiol. 2000. 83. P. 463-468. CrossRef PubMed
  57.  
  58. Kubo K., Akima H., Ushiyama J. Effects of resistance training during bed rest on the viscoelastic properties of tendon structures in the lower limb . Scand. J. Med. Sci. Sports. 2004. 14. P. 296-302. CrossRef PubMed
  59.  
  60. Maganaris C.N., Reeves N.D., Rittweger J. Adaptive response of human tendon to paralysis . Muscle Nerve. 2006. 33. P. 85-92. CrossRef PubMed
  61.  
  62. Mayer R.F., Burke R.E., Toop J. The effect of long-term immobilization on the motor unit population of the cat medial gastrocnemius muscle . Neuroscience. 1981. 6. P. 725-739. CrossRef  
  63. Mora I., Quintero S., Pfirot C. Electromechanical as­sessment of ankle stability . Eur. J. Appl. Physiol. 2003. 88. P. 558-564. CrossRef PubMed
  64.  
  65. Muraoka T., Muramatsu T., Fukunaga T., Kanehisa H. Influence of tendon slack on electromechanical delay in the human medial gastrocnemius in vivo . J. Appl. Physiol. 2004. 96. P. 540-544.
  66. CrossRef PubMed  
  67. Narici M.V., Cerretelli P. Changes in human muscle architecture in disuse-atrophy evaluated by ultrasound imaging . J. Gravit. Physiol. 1998. 5. P. P73-P74.
  68.  
  69. Norman R.W., Komi P.V. Electromechanical delay in skeletal muscle under normal movement conditions . Acta Physiol. Scand. 1979. 106. P. 241-248. CrossRef PubMed
  70.  
  71. Ranatunga K.W. Temperature-dependence of shortening velocity and rate of isometric tension development in rat skeletal muscle . J. Physiol. 1982. 329. P. 465-483. CrossRef PubMed PubMedCentral
  72.  
  73. RecktenwaldM.R., Hodgson J.A., Roy R.R. Effect of spaceflight on rhesus quadrupedal locomotion after return to 1G . J. Neurophysiol. 1999. 81. P. 2451-2463. CrossRef PubMed
  74.  
  75. Reeves N.D., Narici M.V., Maganaris C.N. In vivo human muscle structure and function: adaptations to resistance training in old age . Exp. Physiol. 2004. 89. P. 675-689. CrossRef PubMed
  76.  
  77. Steven L., MounierY., Holy X., Falempin M. Contractile properties of rat soleus muscle after 15 days of hindlimb suspension . J. Appl. Physiol. 1990. 68. P. 334-340. CrossRef PubMed
  78.  
  79. ThomasonD.B., Booth F.W. Atrophy of the soleus muscle by hindlimb unweighting . J. Appl. Physiol. 1990. 68. P. 1-12. CrossRef PubMed
  80.  
  81. Viitasalo J.T., Komi P.V. Interrelauonships between electro-myographical, muscle structure and refiex time measurements in man . Acta Physiol. Scand. 1981. 111. P. 97-103. CrossRef PubMed
  82.  
  83. Weiss A.D. The locus of reaction time change with set, motivation and age . J. Gerontol. 1965. 20. P. 60-64. CrossRef PubMed
  84.  
  85. Widrick J.J., Knuth S.T., Norenberg K.M. Effect of a 17 days spaceflight on contractile properties of human soleus muscle fibers . J. Physiol. 1999. 516. P. 915-930. CrossRef PubMed PubMedCentral
  86.  
  87. Widrick J.J., Norenberg K.M., Romatowski J.G. Force-velocity-power and force-pCa relationships of human soleus fibers after 17 days of bed rest . J. Appl. Physiol. 1998. 85. P. 1949-1956. CrossRef PubMed
  88.  
  89. Widrick J.J., Trappe S.W., Blaser C.A., Costill D.L., Fitts R.H. Isometric force and maximal shortening velocity of single muscle fibers from elite master runners . Amer. J. Physiol. Cell. Physiol. 1996. 271. P. C666-C673. CrossRef PubMed
  90.  
  91. Wilkie D.R. The relation between force and velocity in human muscle . J. Physiol. 1949. 110. P. 249-280. CrossRef PubMed PubMedCentral
  92.  
  93. Witzmann F.A., Kim D.H., Fitts R.H. Recovery time course in contractile function on fast and slow skeletal muscle after hind limb immobilization . J. Appl. Physiol. 1982. 52. P. 677-682. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.