Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2012; 58(2): 3-15


Reactive nitrogen and oxygen species metabolism in rat heart mitochondria upon administration of NO donor in vivo

Akopova OV, Korkach IuP, Kotsiuruba AV, Kolchyns'ka LI, Sagach VF.

    O.O. Bogomoletz Institute of Physiology Ukrainian NationalAcademy of Science, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz58.02.003

Abstract

Some aspects of reactive nitrogen and oxygen species (RNS and ROS) metabolism in rat heart mitochondria under admin­istration of different doses of nitroglycerine (NG) in vivo are discussed. It is shown that NG administration results in a dose-dependent increase in Ca2+-uptake in mitochondria, due to the dose-dependent inhibition of mitochondrial permeabil­ity transition pore (MPTP) in vivo and the activation of Ca2+-dependent mitochondrial NOS. It was shown that NOS activ­ity increases in accord with the increase of Ca2+-uptake in mitochondria. The dose-dependent activation of nitrat-reductase is observed. However, nitrite production decreases dose-dependently, according to the change of NO2-/NO3- ratio on behalf of NO3-, the end product of NO transformations. The relation between nitrosylation of mitochondrial proteins with the nitrosothiols formation and nitrate production also changes towards NO3-, which shows the activation of oxida­tion reactions in heart mitochondria after NG administration. Accordingly, dose-dependent increase in lipid peroxidation (LP) products is shown, the hallmark of the membrane damage in mitochondria. It is established that the cause of oxidative stress, besides the dose-dependent increase in ROS produc­tion (hydroperoxide, superoxide and hydroxyl-radical), lies in the increase of free iron content, derived from the oxidation of mitochondrial iron-containing proteins. The iron interaction with hydroperoxide following Fenton reaction as well as free-radical decomposition of peroxynitrite, derived from NO3- are the possible cause of manifold increase in ROS as well as LP production, and RNS oxidation to NO3-. Thus, NO-dependent MPTP blockage, due to NO synthesis in mitochondria in vivo, results in the activation of both constituents of NO-cycle: NOS-dependent, due to Ca2+-dependent activation of mito-chondrial NOS, and nitrate-reductase-dependent, due to the increase in NO3- formation. However, increase in ROS pro­duction, augmented by the iron release, leads to the oxidative stress and the shift of RNS metabolism towards NO3- forma­tion, in spite of the activation of nitrate-reductase-dependent pathway of NO-cycle. It is shown that reversible MPTP open­ing in vitro diminishes ROS production, whereas MPTP block­age by cyclosporine A restores the ROS formation to control level. Thus, MPTP-dependent inhibition of ROS overproduc­tion both in vitro and in vivo, shows the importance of MPTP in the regulation of ROS and RNS metabolism in mitochon­dria.

Keywords: reactive nitrogen and oxygen species, nitroglycer-ine, calcium, mitochondrial permeability transition pore, heartmitochondria.

References

  1. Akopova O.V., Sagach V.F. Calcium release from rat liver mitochondria under conditions of membrane potential collapse . Ukrain. biohim. journal 2005. 77, No. 3. P. 68-75.
  2.  
  3. Akopova O.V., Kharlamova O.M., Kotsyuruba A.V., Korkach Yu.P., Sagach V.F. Infused with nitric oxide on Na +, K + ATPase in tissue aorti schuriv . Fizol. journal 2009. 55, No. 1. P. 27-35.
  4.  
  5. Akopova O.V. The role of the mitochondrial pore in the transmembrane exchange of calcium in mitochondria . Ukrain. biohim. journal 2008. 80, No. 3. P. 40-47.
  6.  
  7. Alikulov Z.L., Lvov N.P., Kretovich V.L. Nitrate and nitrite reductase activity of milk . Biochemistry. 1980. 45, No. 9. P. 1714-1718.
  8.  
  9. Vanin A.F. Dinitrosyl iron complexes and S-nitrosothiols two possible forms of stabilization and transport of nitric oxide in biological systems . Biochemistry. 1998. 63, No. 7. P. 924-938.
  10.  
  11. Korkach Yu.P., Dudchenko N.O., Kotsyuruba A.V. The role of non-heme hall in protective dystrophy of ecdysterone in the development of streptozotocin Induced hypoglycemia in schuria . Ukr. biohim. journal 2008. 80, No. 1. P. 46-51.
  12.  
  13. Kostyuk P.G., Kostyuk O.P., Luk'yanets O.A. Ini calcium in the function of the brain in physiology to pathology. K .: Naukova Dumka, 2005 . 198 p.
  14.  
  15. Reutov V.P., Sorokina E.G., Okhotin V.E., Kositsyn N.S. Cyclic transformations of nitric oxide in mammals. M .: Nauka, 1998 .-- 159 p.
  16.  
  17. Akerman K.E.O., Wikstrom M.K.F. Safranine as a probe of the mitochondrial membrane potential . FEBS Lett. 1976. 68, N 2. P. 191-197. CrossRef  
  18. Akopova O.V., Kolchinskaya L.I., Nosar V.I., Smirnov A.N., Malysheva M.K., Mankovska I.N., Sagach V.F. The effect of mitochondrial permeability transition pore opening on reactive oxygen species production in rat brain mitochondria . Ukr. biohim. zhurn. 2011. 83, N 6 P. 46-55.
  19.  
  20. Brand M.D., Affourtit Ch., Esteves T.C., Green K., Lambert A.J., Miwa S., Pakay J., Parker N. Mitochon­drial superoxide: production, biological effects, and activation of uncoupling proteins . Free Rad. Biol. Med. 2004. 37, N 6. P. 755-767. CrossRef PubMed
  21.  
  22. Basaga H.S. Biochemcal aspects of free radicals .Cell Biol. 1990. 68, N 5. P. 989-998. CrossRef PubMed
  23.  
  24. Blaustein M.P. Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness .Amer. J. Physiol. 1993. 264. P. C1367-C1387. CrossRef PubMed
  25.  
  26. Borutaite V., Brown G.C. S-nitrosothiol inhibition of mitochondrial complex I causes a reversible increase in mitochondrial hydrogen peroxide production . Biochim. and Biophys. Acta. 2006. 1757. P. 562-566. CrossRef PubMed
  27.  
  28. Boyde T.R., Rahmatullah M. Optimization of conditions for the colorimetric determination of citrul-line using diacetyl monoxime . Anal. Biochem. 1980. 107, N 2. P. 424-431. CrossRef  
  29. Brookes P.S., Yoon Y., Robotham J.L., Anders M.W., Sheu Sh.-Sh. Calcium, ATP, and ROS: a mitochondrial love-hate triangle . Amer. J. Physiol. 2004. 287. C817-C833. CrossRef PubMed
  30.  
  31. Conte D., Narindrasorosa K.S., Sarcar B. In vivo and in vitro iron-replaced zinc finger generated free radicals and caused DNA damage . J. Biol. Chem. 1996. 271, N 9. P. 5125-5130. CrossRef PubMed
  32.  
  33. McCormak J.G., Denton R.M. Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy metabolism . Dev. Neurosci. 1993. 15. P. 165-173. CrossRef PubMed
  34.  
  35. Daiber A., Wenzel P., Oelze M. Mitochondrial alde­hyde dehydrogenase (ALDH-2) maker of and marker for nitrate tolerance in response to nitroglycerine treat­ment . Chem. Biol. Interact. 2009. 178, N 1-3. P. 40-47. CrossRef PubMed
  36.  
  37. Green L.C., David A.W., Glogovski J. Analysis of nitrate, nitrite and [15N]nitrate in biological fluids . Anal. Biochem. 1982. 126, N 1. P. 131-138. CrossRef  
  38. Halliwell B. Oxidants and human disease: some new concepts . FASEB J. 1987. 1, N 5. P. 358-364. CrossRef PubMed
  39.  
  40. Hoppe U.C. Mitochondrial calcium channels . FEBS Lett. 2010. 584. P. 1975-1981. CrossRef PubMed
  41.  
  42. Huwiler M., Kohler H. Pseudo-catalytic degradation of hydrogen peroxide in the lactoperoxidase. H O . iodide system . Eur. J. Biochem. 1984. 141, N 1. P.2 69-74. CrossRef PubMed
  43.  
  44. Ignarro L.J., Napoli C, Loscalzo J. Nitric oxide do­nors and cardiovascular agents modulating the bioac­tivity of nitric oxide . Circulat. Res. 2002. 90, N 1. P. 21-28. CrossRef PubMed
  45.  
  46. Kakkar P., Singh B.K. Mitochondria: a hub of redox activities and cellular distress control . Mol. Cell Biochem. 2007. 305. P. 235-253. CrossRef PubMed
  47.  
  48. Korshunov S.S., Skulachev V.P., Starkov A.A. High protonic potential actuates a mechanism of produc­tion of reactive oxygen species in mitochondia .FEBS Lett. 1997. 416 P. 15-18. CrossRef  
  49. Kroemer G., Petit P., Zamzami N., Vayssiere J.-L., Mignotte B. The biochemistry of programmed cell death .FASEB J. 1995. 9. P. 1277-1287. CrossRef PubMed
  50.  
  51. Lacerda L., Smith R.M., Opie L., Lecour S. TNF6-induced cytoprotection requires the production of free radicals within mitochondria in C2C12 myotubes . Life Sci. 2006. 79. P. 2194-2201. CrossRef PubMed
  52.  
  53. Radi R., Beckman J.C., Bush K.M., Freeman B.A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide . Arch. Biochem. and Biophys. 1991. 288. P. 481-487. CrossRef  
  54. Rizzuto R., Bernardi P., Pozzan T. Mitochondria as all-round players of the calcium game . J. Physiol. 2000. 529, N 1. P. 37-47. CrossRef PubMed PubMedCentral
  55.  

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.