Cytochrome c as an amplifier of ROS release in mitochondria
O.V. Akopova, L.I. Kolchinskaya, Nosar V.I., Bouryi V.A., Mankovska I.N., V.F. Sagach
Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz58.01.003
Abstract
The influence of exogenous cytochrome c on reactive oxygen species (ROS) formation and its dependence on mitochondrial permeability transition pore (MPTP) opening is studied in rat liver mitochondria. Fluorescent probe dichlorofluorescein (DCF) was used. It was shown that MPTP activation by increasing concentrations of Ca2+ in the medium results in the increase in mitochondrial ROS production and oxygen consumption, but the decrease in matrix calcium retention, dependent on the amount of added Ca2+. Cytochrome c in the incubation medium does not much influence ROS formation when MPTP opening is blocked by cyclosporine A. However, in the presence of cyto-chrome c MPTP opening is accompanied by dramatic increase in ROS production. Steep rise in DCF fluorescence because of matrix ROS formation is sensitive to MPTP opening and is not resulted from the direct interaction between the probe and cytochrome c outside the mitochondria. To explain obtained data the hypothesis is put forward that MPTP could serve for ROS exchange between the matrix and the medium where heme iron of cytochrome c would act as a catalytic center to enhance ROS production. We suppose that apart of its conventional function, cytochrome c which is not involved in electron transport, could serve in such way as the amplifier of ROS production which in turn would provide a background for the development of apoptosis due to MPTP opening. Key words: mitochondria, Ca2+, mitochondrial permeability transition pore, ROS, cytochrome c.
Keywords:
мітохондрії, Ca2+, мітохондріальна пора,активні форми кисню, цитохром c.
References
- Akopova O.V. The role of permeability transition pore in transmembrane Ca2+-exchange in mitochondria .Ukr. Biochim. J. 2008. 80, N 3. P.40-47.
- Akopova O.V. The influence of ATP-dependent K+-channel opener on the opening of mitochondrial permeability transition pore in rat liver mitochondria . Ibid. 2011. 83, N 3. P.37-47
- Beavis A.D. Upper and lower limits of the charge translocation stoichiometry of mitochondrial electron transport .J. Biol. Chem. 1987. 262, N 13. P. 6165-6173.
- Brand M.D., Affourtit Ch., Esteves T., Green K., Lambert A.J., Miwa S., Pakay J., Parker N. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins .Free Radical Biol. Med. 2004. 37, N 6. P.755-767.
CrossRef
PubMed
- Brookes P.S., Yoon Y., Robothham J.L., Anders M.W., Sheu Sh. Sh. Calcium, ATP, and ROS: a mitochondrial love-hate triangle .Amer. J. Physiol. 2004. 287 P.C817-C833.
CrossRef
PubMed
- Burkitt M.J., Wardman P. Cytochrome c is a potent catalyst of dichlorofluorescein oxidation: implications for the role of reactive oxygen species in apoptosis . 11Biochem. Biophys. Res. Commun. 2001. 282 P.329-333.
CrossRef
PubMed
- Cai J., Jones D.P. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss . J. Biol. Chem. 1998. 273. P.11401-11404.
CrossRef
PubMed
- Costa D.T.A., Quinlan C.L., Andrukhiv A., West I.C., Jaburek M., Garlid K.D. The direct physiological effects of mitoKATP opening on heart mitochondria .Amer. J. Physiol. 2006. 290. P. H406-H415.
CrossRef
PubMed
- Gogvadze V., Robertson J.D., Enoksson M., Zhivo-tovsky B., Orrhenius S. Mitochondrial cytochrome c release may occur by volume-dependent mechanisms not involving permeability transition .Biochem. J. 2004. 378 P.213-217.
CrossRef
PubMed PubMedCentral
- Hackenbrock C.R. Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states .Proc. Natl. Acad. Sci. USA. 1968. 61. P.598-605.
CrossRef
PubMed PubMedCentral
- Halliwell B. Oxidants and human disease: some new concepts .FASEB J. 1987. 1, N 5. P.358-364.
CrossRef
PubMed
- Ichas F., Jouaville L.S., Mazat J.-P. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals .Cell. 1997. 89. P.1145-1153.
CrossRef
- Jacobs E.E., Sanadi D.R. Phosphorylation couples to electron transport mediated by high potential electron carriers .Biochim. Biophys. Acta. 1960. 38. P.12-33.
CrossRef
- Korshunov S.S., Krasnikov B.F., Pereverzev M.O., Skulachev V.P. The antioxidant functions of cytochrome s .FEBS Lett. 1999. 462. P.192-198.
CrossRef
- Korshunov S.S., Skulachev V.P., Starkov A.A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondia .FEBS Lett. 1997. 416 P.15-18.
CrossRef
- Kroemer G., Petit P. , Zamzami N., Vayssiere J.-L., Mignotte B. The biochemistry of programmed cell death .FASEB J. 1995. 9. P. 1277-1287.
CrossRef
PubMed
- Knowles M.K., Guenza M.G., Capaldi R.A., Marcus A.H. Cytoskeletal-assisted dynamics of the mitochon-drial reticulum in living cells .Proc. Natl. Acad. Sci. USA. 2002. 99. P.14772-14777.
CrossRef
PubMed PubMedCentral
- Kushnareva Y., Murphy A.N., Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state .Biochem. J. 2002. 368. P.545-553.
CrossRef
PubMed PubMedCentral
- Lander H.M. An essential role for free radicals in signal transduction .FASEB J. 1997. 11. P.118-124.
CrossRef
PubMed
- Pletjushkina O.Yu., Fetisova E.K., Lyamzaev K.G., Ivanova O.Yu., Domnina L.V., Vysokih M.Yu., Pustovidko A.V., Alekseevsky A.V., Alekseevsky D.A., Vasilyev Yu.M., Murphy M.P., Chernyak B.V., Skulachev V.P. Hydrogen peroxide produced inside mitochondria takes part in cell-to-cell transmission of apoptogenic signal .Biochemistry (Moscow). 2006. 71, N1. P.75-84.
CrossRef
PubMed
- Starkov A.A., Polster B.M., Fiskum G. Regulation of hydrogen peroxide production by calcium and Bax .J. Neurochem. 2002. 83. P.220-228.
CrossRef
PubMed
- Zorov D.B., Juhaszova M., Sollott S. Mitochondrial ROS-induced ROS release: an update and review . Biochim. Biophys. Acta. 2006. 1757. P.509-517.
CrossRef
PubMed
- Zorov D.B., Kobrinsky E., Juhaszova M., Sollott S. Examining intracellular organelle function using fluorescent probes .Circulat. Res. 2004. 95. P.239-252.
CrossRef
PubMed
|