Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2011; 57(6): 99-117


Structure and function of biomembranes: influence of nanoparticles

Chekman IS, Simonov PV

    O.O. Bogomolets National Medical University, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz57.06.099

Abstract

The up-to-date view on a biomembrane structure and func­tions and the role of lipid, protein and carbohydrate biomembrane components in maintenance of a cell vital activ­ity is summarized in this article. The up-to-date model of a biomembrane structure as a nanocompartmentalized fluid in which lipids and proteins undergo anomalous diffusion is ex­amined. An attention is paid to lipid rafts existence as nanos-caled membrane domains. The analysis of literature and research results concerning the nanonature of ion channels and the mechanism of influence of nanoparticles on a biomembrane is carried out. It is shown that the data on structure and func­tions of a biomembrane and the nature of influence of nanopar-ticles on it is necessary to create new high-performance thera­peutic agents, diagnostic tools and to study nanoobjects’ toxi-cological properties.

Keywords: biomembrane, lipid bilayer, protein, diffusion,lipid raft, nanoparticle

References

  1. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular biology of the cell. 5th ed. New York: Garland Publishing, 2008. 1601 p. CrossRef  
  2. Arolas J.L., Aviles F.X., Chang J.Y., Ventura S. Folding of small disulfide-rich proteins: clarifying the puzzle . Trends. Biochem. Sci. 2006. 31, N 5. P. 292-301. CrossRef PubMed
  3.  
  4. Banerji S.K., Hayes M.A. Examination of nonendo-cytotic bulk transport of nanoparticles across phos­pholipid membranes . Langmuir. 2007. 23, N 6. P. 3305-3313. CrossRef PubMed
  5.  
  6. Bates I.R., Wiseman P.W., Hanrahan J.W. Investigating membrane protein dynamics in living cells . Biochem. Cell. Biol. 2006. 84, N 6. P. 825-831. CrossRef PubMed
  7.  
  8. Beerlink A., Mell M., Tolkiehn M., Salditt T. Hard x-ray phase contrast imaging of black lipid membranes . Appl. Phys. Lett. 2009. 95. P. 1-3. CrossRef  
  9. Bocquet L., Charlaix E. Nanofluidics, from bulk to in­terfaces . Chem. Soc. Rev. 2010. 39, N 3. P. 1073-1095. CrossRef PubMed
  10.  
  11. Bozhevolnyi S.I. Silver nanoparticles. Aalborg: Aalborg University, Faculty of physics and nanotech-nology, 2005. 81 p.
  12.  
  13. Bradshaw R.A., Dennis E.A. Handbook of cell signal­ing. 2nd edition. Oxford: Acad. Press, 2009. P. 201-207.9. Clapham D.E. Symmetry, selectivity, and the 2003 Nobel Prize . Cell. 2003. 115, N 6. P. 641-646. CrossRef  
  14. De Groot B.L., Grubmuller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF . Science. 2001. 294, N 5550. P. 2353-2357. CrossRef  
  15. Edidin M. Lipids on the frontier: a century of cell-membrane bilayers . Nat. Rev. Mol. Cell. Biol. 2003. 4, N 5. P. 414-418. CrossRef PubMed
  16.  
  17. Eggeling C, Ringemann C, Medda R., Schwarzmann G., Sandhoff K., Polyakova S., Belov V.N., Hein B., Middendorff C., Schonle A., Hell S.W. Direct observa­tion of the nanoscale dynamics of membrane lipids in a living cell . Nature. 2009. 457, N 7233. P. 1159-1162. CrossRef PubMed
  18.  
  19. Eijkel J.C.T., Berg A. Nanofluidics: what is it and what can we expect from it? . Microfluidics and Nanoflui­dics. 2005. 1, N 3. P. 249-267. CrossRef  
  20. Elofsson A., Heijne G. Membrane protein structure: prediction versus reality . Annu. Rev. Biochem. 2007. 76. P. 125-140. CrossRef PubMed
  21.  
  22. Engelman D.M. Membranes are more mosaic than fluid . Nature. 2005. 438, N 7068. P. 578-580. CrossRef PubMed
  23.  
  24. Fornasiero F., In J.B., Kim S., Park H.G., Wang Y., Grigoropoulos C.P., Noy A., Bakajin O. pH-tunable ion selectivity in carbon nanotube pores . Langmuir. 2010. 26, N 18. P. 14848-14853. CrossRef PubMed
  25.  
  26. Ginzburg V.V., Balijepalli S. Modeling the thermody­namics of the interaction of nanoparticles with cell membranes . Nano Lett. 2007. 7, N 12. P. 3716-3722. CrossRef PubMed
  27.  
  28. Gogoi S.K., Gopinath P., Paul A., Ramesh A., Ghosh S.S., Chattopadhyay A. Green fluorescent protein-ex­pressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nano­particles . Langmuir. 2006. 22, N 22. P. 9322-9328. CrossRef PubMed
  29.  
  30. Gurtovenko A.A., Onike O.I., Anwar J. Chemically induced phospholipid translocation across biological membranes . Langmuir. 2008. 24, N 17. P. 9656-9660. CrossRef PubMed
  31.  
  32. Haustein E., Schwille P. Fluorescence correlation spec­troscopy: novel variations of an established technique . Annu. Rev. Biophys. Biomol. Struct. 2007. 36. P. 151-169. CrossRef PubMed
  33.  
  34. Helms J.B., Zurzolo C. Lipids as targeting signals: lipid rafts and intracellular trafficking . Traffic. 2004. 5, N 4. P. 247-254. CrossRef PubMed
  35.  
  36. Hong S., Bielinska A.U., Mecke A., Keszler B., Beals J.L., Shi X., Balogh L., Orr B.G., Baker J.R., Holl M.M.B. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport . Bioconjug. Chem. 2004. 15, N 4. P. 774-782. CrossRef PubMed
  37.  
  38. Hou X., Yang F., Li L., Song Y, Jiang L., Zhu D. A biomimetic asymmetric responsive single nanochannel . J. Amer. Chem. Soc. 2010. 132, N 33. P. 11736- 11742. CrossRef PubMed
  39.  
  40. Kik R.A. Lipid bilayers and interfaces . Thesis Wageningen University, the Netherlands. 2007. P. 1-169.
  41.  
  42. Kim J.S., Kuk E., Yu K.N., Kim J., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C, Kim Y, Lee Y, Jeong D.H., Cho M. Antimicrobial effects of silver nanoparticles . Nanomedicine. 2007. 3, N 1. P. 95-101. CrossRef PubMed
  43.  
  44. Klippstein R., Fernandez-Montesinos R., Castillo P.M., Zaderenko A.P., Pozo D. Silver nanoparticles. Vienna: IN-TECH Books, 2010. P. 309-324.
  45.  
  46. Koopman M. Nanoscale cell membrane organization: a near-field optical view. Enschede: University of Twente, 2006. 142 p.
  47.  
  48. Kraszewski S., Tarek M., Treptow W., Ramseyer C. Affinity of C60 neat fullerenes with membrane pro­teins: a computational study on potassium channels . ACS Nano. 2010. 4, N 7. P. 4158-4164. CrossRef PubMed
  49.  
  50. Krishnamurthy V., Monfared S., Cornell B. Ion channel biosensors part I: construction, operation, and clinical studies . IEEE Transactions on Nanotechnology. 2010. 9, N 3. P. 313-322. CrossRef  
  51. Kusumi A., Ike H., Nakada C, Murase K., Fujiwara T. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules . Semin. Immunol. 2005. 17, N 1. P. 3-21. CrossRef PubMed
  52.  
  53. Kusumi A., Nakada C, Ritchie K., Murase K., Suzuki K., Murakoshi H., Kasai R.S., Kondo J., Fujiwara T. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules . Annu. Rev. Biophys. Biomol. Struct. 2005. 34. P. 351-378. CrossRef PubMed
  54.  
  55. Kusumi A., Shirai Y.M., Koyama-Honda I., Suzuki K., Fujiwara T. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy . FEBS Lett. 2010. 584, N 9. P. 1814-1823. CrossRef PubMed
  56.  
  57. Leroueil P.R., Hong S., Mecke A., Baker J.R., Orr B.G., Holl M.M.B. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? . Acc. Chem. Res. 2007. 40, N 5. P. 335-342. CrossRef PubMed PubMedCentral
  58.  
  59. Li Y, Chen X., Gu N. Computational investigation of interaction between nanoparticles and membranes: hydrophobic. hydrophilic effect . J. Phys. Chem. B. 2008. 112, N 51. P. 16647-16653. CrossRef PubMed
  60.  
  61. Li-Fries J. Ion channels in mixed tethered Bilayer lipid membranes. In: Johannes Gutenberg-Universitflt Mainz, 2007. P. 6-12.
  62.  
  63. Lipowsky R., Sackmann E. Handbook of biological physics. Elsevier Science B.V., 1995. P. 491-519.
  64.  
  65. Lodish H., Berk A., Matsudaira P., Kaiser C.A., Krieger M., Scott M.P., Zipursky L., Darnell J. Molecular cell biology. 5th ed. New York: W. H. Freeman, 2003. 973 p.38. Maxfield F.R. Plasma membrane microdomains . Curr. Opin. Cell. Biol. 2002. 14, N 4. P. 483-487. CrossRef  
  66. Mayor S., Rao M. Rafts: scale-dependent, active lipid organization at the cell surface . Traffic. 2004. 5, N 4. P. 231-240. CrossRef PubMed
  67.  
  68. Owen D.M., Williamson D., Rentero C, Gaus K. Quan­titative microscopy: protein dynamics and membrane organization . Ibid. 2009. 10, N 8. P. 962-971. CrossRef PubMed
  69.  
  70. Pal S., Tak Y.K., Song J.M. Does the antibacterial ac­tivity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacte­rium Escherichia coli . Appl. Environ. Microbiol. 2007. 73, N 6. P. 1712-1720. CrossRef PubMed PubMedCentral
  71.  
  72. Parameswari E., Udayasoorian C, Sebastian S.P., Jayabalakrishnan R.M. The bactericidal potential of silver nanoparticles . Intern. Res. J. Biotechnol. 2010. 1,N 3. P. 44-49.
  73.  
  74. Parton R.G., Richards A.A. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms . Traffic. 2003. 4, N 11. P. 724-738. CrossRef PubMed
  75.  
  76. Parton R.G., Hancock J.F. Lipid rafts and plasma membrane microorganization: insights from Ras . Trends Cell. Biol. 2004. 14, N 3. P. 141-147. CrossRef PubMed
  77.  
  78. Pomorski T., Holthuis J.C., Herrmann A., Meer G. Tracking down lipid flippases and their biological func­tions . J. Cell. Sci. 2004. 117, N 6. P. 805-813. CrossRef PubMed
  79.  
  80. Qiao R., Roberts A.P., Mount A.S., Klaine S.J., Ke P.C. Translocation of C60 and its derivatives across a lipid bilayer . Nano Lett. 2007. 7, N 3. P. 614-619. CrossRef PubMed
  81.  
  82. Raffi M., Hussain F., Bhatti T.M., Akhter J.I., Hameed A., Hasan M.M. Antibacterial characterization of sil­ver nanoparticles against E. coli ATCC-15224 . J. Mater. Sci. Technol. 2008. 24, N 2. P. 192-196.
  83.  
  84. Rayan G., Guet J., Taulier N., Pincet F., Urbach W. Recent applications of fluorescence recovery after photobleaching (FRAP) to membrane bio-macromol-ecules . Sensors. 2010. 10. P. 5927-5948. CrossRef PubMed PubMedCentral
  85.  
  86. Reitsma S., Slaaf D.W., Vink H., Zandvoort M.A.M.J., Egbring M.G.A. The endothelial glycocalyx: compo­sition, functions, and visualization . Pflugers Arch. 2007. 454, N 3. P. 345-359. CrossRef PubMed PubMedCentral
  87.  
  88. Rejman J., Oberle V., Zuhorn I.S., Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis . Biochem. J. 2004. 377. P. 159-169. CrossRef PubMed PubMedCentral
  89.  
  90. Ries R.S., Choi H., Blunck R., Bezanilla F., Heath J.R. Black lipid membranes: visualizing the structure, dy­namics, and substrate dependence of membranes . J. Phys. Chem. B. 2004. 108, N 41. P. 16040-16049. CrossRef  
  91. Ritchie K., Iino R., Fujiwara T., Murase K., Kusumi A. The fence and picket structure of the plasma mem­brane of live cells as revealed by single molecule tech­niques (Review) . Mol. Membr. Biol. 2003. 20, N 1. P. 13-18. CrossRef PubMed
  92.  
  93. Roger M., Peletier M.A. Cell membranes, lipid bilay-ers, and the elastica functional . Proc. Appl. Math. Mech. 2006. 6,N 1. P. 11-14. CrossRef  
  94. Roiter Y., Ornatska M., Rammohan A.R., Balakrishnan J., Heine D.R., Minko S. Interaction of nanoparticles with lipid membrane . Nano Lett. 2008. 8, N 3. P. 941-944. CrossRef PubMed
  95.  
  96. Roiter Y., Ornatska M., Rammohan A.R., Balakrishnan J., Heine D.R., Minko S. Interaction of lipid membrane with nanostructured surfaces . Langmuir. 2009. 25, N 11. P. 6287-6299. CrossRef PubMed
  97.  
  98. Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles . Acta Biomater. 2008. 4, N 3. P. 707-716. CrossRef PubMed
  99.  
  100. Salaun C, James D.J., Chamberlain L.H. Lipid rafts and the regulation of exocytosis . Traffic. 2004. 5, N 4. P. 255-264. CrossRef PubMed PubMedCentral
  101.  
  102. Saxton M.J., Jacobson K. Single-particle tracking: ap­plications to membrane dynamics . Annu. Rev. Biophys. Biomol. Struct. 1997. 26. P. 373-399. CrossRef PubMed
  103.  
  104. Scarlata S. Membrane protein structure . Biophysics Textbook Online. 2004. P. 1-23.
  105.  
  106. Schmuhl R., Nijdam W., Sekulic J., Chowdhury S.R., Rijn C.J.M., Berg A., Elshof J.E. Blank D.H.A. Si-supported mesoporous and microporous oxide inter­connects as electrophoretic gates for application in microfluidic devices . Anal. Chem. 2005. 77, N 1. P. 178-184. CrossRef PubMed
  107.  
  108. Silvius J.R. Partitioning of membrane molecules be­tween raft and non-raft domains: insights from model-membrane studies . Biochim. and Biophys. Acta. 2005. 1746, N 3. P. 193-202. CrossRef PubMed
  109.  
  110. Simons K., Ikonen E. Functional rafts in cell membranes . Nature. 1997. 387, N 6633. P. 569-572. CrossRef PubMed
  111.  
  112. Simons K., Vaz W.L. Model systems, lipid rafts, and cell membranes . Annu. Rev. Biophys. Biomol. Struct. 2004. 33. P. 269-295. CrossRef PubMed
  113.  
  114. Simons K., Gerl M.J. Revitalizing membrane rafts: new tools and insights . Nat. Rev. Mol. Cell. Biol. 2010. 11, N 10. P. 688-699. CrossRef PubMed
  115.  
  116. Singer S.J., Nicolson G.L. The fluid mosaic model of the structure of cell membranes . Science. 1972. 175, N 23. P. 720-731. CrossRef PubMed
  117.  
  118. Sondi I., Salopek-Sondi B. Silver nanoparticles as anti­microbial agent: a case study on E. coli as a model for Gram-negative bacteria . J. Colloid Interface Sci. 2004. 275, N 1. P. 177-182. CrossRef  
  119. Stoimenov P.K., Klinger R.L., Marchin G.L., Klabunde K.J. Metal oxide nanoparticles as bactericidal agents . . Langmuir. 2002. 18, N 17. P. 6679-6686. CrossRef  
  120. Streek M., Schmid F., Duong T.T., Ros A. Mecha­nisms of DNA separation in entropic trap arrays: a Brownian dynamics simulation . J. Biotechnol. 2004. 112, N 1-2. P. 79-89. CrossRef PubMed
  121.  
  122. Subczynski W.K., Wisniewska A. Physical properties of lipid bilayer membranes: relevance to membrane bio­logical functions . Acta Biochim. Pol. 2000. 47, N 3. P. 613-625.
  123.  
  124. Tanford C. The hydrophobic effect and the organizationof living matter . Science. 1978. 200, N 4345. P. 1012-1018. CrossRef PubMed
  125.  
  126. Tas N.R., Mela P., Kramer T., Berenschot J.W., Berg A. Capillarity induced negative pressure of water plugs in nanochannels . Nano Letters. 2003. 3,N 11. P. 1537-1540. CrossRef  
  127. Wagner A.J., Bleckmann C.A., Murdock R.C, Schrand A.M., Schlager J.J., Hussain S.M. Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages . J. Phys. Chem. B. 2007. 111, N 25. P. 7353-7359. CrossRef PubMed
  128.  
  129. Wang B., Zhang L., Bae S.C., Granick S. Nanoparticle-induced surface reconstruction of phospholipid mem­branes . Proc. Natl. Acad. Sci. USA. 2008. 105, N 47. P. 18171-18175. CrossRef PubMed PubMedCentral
  130.  
  131. Yeagle P.L. Cell Membrane Features . Encycloped. Life Sci. 2001. P. 1-7. CrossRef PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2020.