Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2011; 57(6): 99-117

Structure and function of biomembranes: influence of nanoparticles

Chekman IS, Simonov PV.

    O.O. Bogomolets National Medical University, Kyiv, Ukraine


The up-to-date view on a biomembrane structure and func­tions and the role of lipid, protein and carbohydrate biomembrane components in maintenance of a cell vital activ­ity is summarized in this article. The up-to-date model of a biomembrane structure as a nanocompartmentalized fluid in which lipids and proteins undergo anomalous diffusion is ex­amined. An attention is paid to lipid rafts existence as nanos-caled membrane domains. The analysis of literature and research results concerning the nanonature of ion channels and the mechanism of influence of nanoparticles on a biomembrane is carried out. It is shown that the data on structure and func­tions of a biomembrane and the nature of influence of nanopar-ticles on it is necessary to create new high-performance thera­peutic agents, diagnostic tools and to study nanoobjects’ toxi-cological properties.

Keywords: biomembrane, lipid bilayer, protein, diffusion,lipid raft, nanoparticle


  1. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular biology of the cell. 5th ed. New York: Garland Publishing, 2008. 1601 p.
  2. Arolas J.L., Aviles F.X., Chang J.Y., Ventura S. Folding of small disulfide-rich proteins: clarifying the puzzle . Trends. Biochem. Sci. 2006. 31, N 5. P. 292-301.
  3. Banerji S.K., Hayes M.A. Examination of nonendo-cytotic bulk transport of nanoparticles across phos­pholipid membranes . Langmuir. 2007. 23, N 6. P. 3305-3313.
  4. Bates I.R., Wiseman P.W., Hanrahan J.W. Investigating membrane protein dynamics in living cells . Biochem. Cell. Biol. 2006. 84, N 6. P. 825-831.
  5. Beerlink A., Mell M., Tolkiehn M., Salditt T. Hard x-ray phase contrast imaging of black lipid membranes . Appl. Phys. Lett. 2009. 95. P. 1-3.
  6. Bocquet L., Charlaix E. Nanofluidics, from bulk to in­terfaces . Chem. Soc. Rev. 2010. 39, N 3. P. 1073-1095.
  7. Bozhevolnyi S.I. Silver nanoparticles. Aalborg: Aalborg University, Faculty of physics and nanotech-nology, 2005. 81 p.
  8. Bradshaw R.A., Dennis E.A. Handbook of cell signal­ing. 2nd edition. Oxford: Acad. Press, 2009. P. 201-207.9. Clapham D.E. Symmetry, selectivity, and the 2003 Nobel Prize . Cell. 2003. 115, N 6. P. 641-646.
  9. De Groot B.L., Grubmuller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF . Science. 2001. 294, N 5550. P. 2353-2357.
  10. Edidin M. Lipids on the frontier: a century of cell-membrane bilayers . Nat. Rev. Mol. Cell. Biol. 2003. 4, N 5. P. 414-418.
  11. Eggeling C, Ringemann C, Medda R., Schwarzmann G., Sandhoff K., Polyakova S., Belov V.N., Hein B., Middendorff C., Schonle A., Hell S.W. Direct observa­tion of the nanoscale dynamics of membrane lipids in a living cell . Nature. 2009. 457, N 7233. P. 1159-1162.
  12. Eijkel J.C.T., Berg A. Nanofluidics: what is it and what can we expect from it? . Microfluidics and Nanoflui­dics. 2005. 1, N 3. P. 249-267.
  13. Elofsson A., Heijne G. Membrane protein structure: prediction versus reality . Annu. Rev. Biochem. 2007. 76. P. 125-140.
  14. Engelman D.M. Membranes are more mosaic than fluid . Nature. 2005. 438, N 7068. P. 578-580.
  15. Fornasiero F., In J.B., Kim S., Park H.G., Wang Y., Grigoropoulos C.P., Noy A., Bakajin O. pH-tunable ion selectivity in carbon nanotube pores . Langmuir. 2010. 26, N 18. P. 14848-14853.
  16. Ginzburg V.V., Balijepalli S. Modeling the thermody­namics of the interaction of nanoparticles with cell membranes . Nano Lett. 2007. 7, N 12. P. 3716-3722.
  17. Gogoi S.K., Gopinath P., Paul A., Ramesh A., Ghosh S.S., Chattopadhyay A. Green fluorescent protein-ex­pressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nano­particles . Langmuir. 2006. 22, N 22. P. 9322-9328.
  18. Gurtovenko A.A., Onike O.I., Anwar J. Chemically induced phospholipid translocation across biological membranes . Langmuir. 2008. 24, N 17. P. 9656-9660.
  19. Haustein E., Schwille P. Fluorescence correlation spec­troscopy: novel variations of an established technique . Annu. Rev. Biophys. Biomol. Struct. 2007. 36. P. 151-169.
  20. Helms J.B., Zurzolo C. Lipids as targeting signals: lipid rafts and intracellular trafficking . Traffic. 2004. 5, N 4. P. 247-254.
  21. Hong S., Bielinska A.U., Mecke A., Keszler B., Beals J.L., Shi X., Balogh L., Orr B.G., Baker J.R., Holl M.M.B. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport . Bioconjug. Chem. 2004. 15, N 4. P. 774-782.
  22. Hou X., Yang F., Li L., Song Y, Jiang L., Zhu D. A biomimetic asymmetric responsive single nanochannel . J. Amer. Chem. Soc. 2010. 132, N 33. P. 11736- 11742.
  23. Kik R.A. Lipid bilayers and interfaces . Thesis Wageningen University, the Netherlands. 2007. P. 1-169.
  24. Kim J.S., Kuk E., Yu K.N., Kim J., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C, Kim Y, Lee Y, Jeong D.H., Cho M. Antimicrobial effects of silver nanoparticles . Nanomedicine. 2007. 3, N 1. P. 95-101.
  25. Klippstein R., Fernandez-Montesinos R., Castillo P.M., Zaderenko A.P., Pozo D. Silver nanoparticles. Vienna: IN-TECH Books, 2010. P. 309-324.
  26. Koopman M. Nanoscale cell membrane organization: a near-field optical view. Enschede: University of Twente, 2006. 142 p.
  27. Kraszewski S., Tarek M., Treptow W., Ramseyer C. Affinity of C60 neat fullerenes with membrane pro­teins: a computational study on potassium channels . ACS Nano. 2010. 4, N 7. P. 4158-4164.
  28. Krishnamurthy V., Monfared S., Cornell B. Ion channel biosensors part I: construction, operation, and clinical studies . IEEE Transactions on Nanotechnology. 2010. 9, N 3. P. 313-322.
  29. Kusumi A., Ike H., Nakada C, Murase K., Fujiwara T. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules . Semin. Immunol. 2005. 17, N 1. P. 3-21.
  30. Kusumi A., Nakada C, Ritchie K., Murase K., Suzuki K., Murakoshi H., Kasai R.S., Kondo J., Fujiwara T. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules . Annu. Rev. Biophys. Biomol. Struct. 2005. 34. P. 351-378.
  31. Kusumi A., Shirai Y.M., Koyama-Honda I., Suzuki K., Fujiwara T. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy . FEBS Lett. 2010. 584, N 9. P. 1814-1823.
  32. Leroueil P.R., Hong S., Mecke A., Baker J.R., Orr B.G., Holl M.M.B. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? . Acc. Chem. Res. 2007. 40, N 5. P. 335-342.
  33. Li Y, Chen X., Gu N. Computational investigation of interaction between nanoparticles and membranes: hydrophobic. hydrophilic effect . J. Phys. Chem. B. 2008. 112, N 51. P. 16647-16653.
  34. Li-Fries J. Ion channels in mixed tethered Bilayer lipid membranes. In: Johannes Gutenberg-Universitflt Mainz, 2007. P. 6-12.
  35. Lipowsky R., Sackmann E. Handbook of biological physics. Elsevier Science B.V., 1995. P. 491-519.
  36. Lodish H., Berk A., Matsudaira P., Kaiser C.A., Krieger M., Scott M.P., Zipursky L., Darnell J. Molecular cell biology. 5th ed. New York: W. H. Freeman, 2003. 973 p.38. Maxfield F.R. Plasma membrane microdomains . Curr. Opin. Cell. Biol. 2002. 14, N 4. P. 483-487.
  37. Mayor S., Rao M. Rafts: scale-dependent, active lipid organization at the cell surface . Traffic. 2004. 5, N 4. P. 231-240.
  38. Owen D.M., Williamson D., Rentero C, Gaus K. Quan­titative microscopy: protein dynamics and membrane organization . Ibid. 2009. 10, N 8. P. 962-971.
  39. Pal S., Tak Y.K., Song J.M. Does the antibacterial ac­tivity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacte­rium Escherichia coli . Appl. Environ. Microbiol. 2007. 73, N 6. P. 1712-1720.
  40. Parameswari E., Udayasoorian C, Sebastian S.P., Jayabalakrishnan R.M. The bactericidal potential of silver nanoparticles . Intern. Res. J. Biotechnol. 2010. 1,N 3. P. 44-49.
  41. Parton R.G., Richards A.A. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms . Traffic. 2003. 4, N 11. P. 724-738.
  42. Parton R.G., Hancock J.F. Lipid rafts and plasma membrane microorganization: insights from Ras . Trends Cell. Biol. 2004. 14, N 3. P. 141-147.
  43. Pomorski T., Holthuis J.C., Herrmann A., Meer G. Tracking down lipid flippases and their biological func­tions . J. Cell. Sci. 2004. 117, N 6. P. 805-813.
  44. Qiao R., Roberts A.P., Mount A.S., Klaine S.J., Ke P.C. Translocation of C60 and its derivatives across a lipid bilayer . Nano Lett. 2007. 7, N 3. P. 614-619.
  45. Raffi M., Hussain F., Bhatti T.M., Akhter J.I., Hameed A., Hasan M.M. Antibacterial characterization of sil­ver nanoparticles against E. coli ATCC-15224 . J. Mater. Sci. Technol. 2008. 24, N 2. P. 192-196.
  46. Rayan G., Guet J., Taulier N., Pincet F., Urbach W. Recent applications of fluorescence recovery after photobleaching (FRAP) to membrane bio-macromol-ecules . Sensors. 2010. 10. P. 5927-5948.
  47. Reitsma S., Slaaf D.W., Vink H., Zandvoort M.A.M.J., Egbring M.G.A. The endothelial glycocalyx: compo­sition, functions, and visualization . Pflugers Arch. 2007. 454, N 3. P. 345-359.
  48. Rejman J., Oberle V., Zuhorn I.S., Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis . Biochem. J. 2004. 377. P. 159-169.
  49. Ries R.S., Choi H., Blunck R., Bezanilla F., Heath J.R. Black lipid membranes: visualizing the structure, dy­namics, and substrate dependence of membranes . J. Phys. Chem. B. 2004. 108, N 41. P. 16040-16049.
  50. Ritchie K., Iino R., Fujiwara T., Murase K., Kusumi A. The fence and picket structure of the plasma mem­brane of live cells as revealed by single molecule tech­niques (Review) . Mol. Membr. Biol. 2003. 20, N 1. P. 13-18.
  51. Roger M., Peletier M.A. Cell membranes, lipid bilay-ers, and the elastica functional . Proc. Appl. Math. Mech. 2006. 6,N 1. P. 11-14.
  52. Roiter Y., Ornatska M., Rammohan A.R., Balakrishnan J., Heine D.R., Minko S. Interaction of nanoparticles with lipid membrane . Nano Lett. 2008. 8, N 3. P. 941-944.
  53. Roiter Y., Ornatska M., Rammohan A.R., Balakrishnan J., Heine D.R., Minko S. Interaction of lipid membrane with nanostructured surfaces . Langmuir. 2009. 25, N 11. P. 6287-6299.
  54. Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles . Acta Biomater. 2008. 4, N 3. P. 707-716.
  55. Salaun C, James D.J., Chamberlain L.H. Lipid rafts and the regulation of exocytosis . Traffic. 2004. 5, N 4. P. 255-264.
  56. Saxton M.J., Jacobson K. Single-particle tracking: ap­plications to membrane dynamics . Annu. Rev. Biophys. Biomol. Struct. 1997. 26. P. 373-399.
  57. Scarlata S. Membrane protein structure . Biophysics Textbook Online. 2004. P. 1-23.
  58. Schmuhl R., Nijdam W., Sekulic J., Chowdhury S.R., Rijn C.J.M., Berg A., Elshof J.E. Blank D.H.A. Si-supported mesoporous and microporous oxide inter­connects as electrophoretic gates for application in microfluidic devices . Anal. Chem. 2005. 77, N 1. P. 178-184.
  59. Silvius J.R. Partitioning of membrane molecules be­tween raft and non-raft domains: insights from model-membrane studies . Biochim. and Biophys. Acta. 2005. 1746, N 3. P. 193-202.
  60. Simons K., Ikonen E. Functional rafts in cell membranes . Nature. 1997. 387, N 6633. P. 569-572.
  61. Simons K., Vaz W.L. Model systems, lipid rafts, and cell membranes . Annu. Rev. Biophys. Biomol. Struct. 2004. 33. P. 269-295.
  62. Simons K., Gerl M.J. Revitalizing membrane rafts: new tools and insights . Nat. Rev. Mol. Cell. Biol. 2010. 11, N 10. P. 688-699.
  63. Singer S.J., Nicolson G.L. The fluid mosaic model of the structure of cell membranes . Science. 1972. 175, N 23. P. 720-731.
  64. Sondi I., Salopek-Sondi B. Silver nanoparticles as anti­microbial agent: a case study on E. coli as a model for Gram-negative bacteria . J. Colloid Interface Sci. 2004. 275, N 1. P. 177-182.
  65. Stoimenov P.K., Klinger R.L., Marchin G.L., Klabunde K.J. Metal oxide nanoparticles as bactericidal agents . . Langmuir. 2002. 18, N 17. P. 6679-6686.
  66. Streek M., Schmid F., Duong T.T., Ros A. Mecha­nisms of DNA separation in entropic trap arrays: a Brownian dynamics simulation . J. Biotechnol. 2004. 112, N 1-2. P. 79-89.
  67. Subczynski W.K., Wisniewska A. Physical properties of lipid bilayer membranes: relevance to membrane bio­logical functions . Acta Biochim. Pol. 2000. 47, N 3. P. 613-625.
  68. Tanford C. The hydrophobic effect and the organizationof living matter . Science. 1978. 200, N 4345. P. 1012-1018.
  69. Tas N.R., Mela P., Kramer T., Berenschot J.W., Berg A. Capillarity induced negative pressure of water plugs in nanochannels . Nano Letters. 2003. 3,N 11. P. 1537-1540.
  70. Wagner A.J., Bleckmann C.A., Murdock R.C, Schrand A.M., Schlager J.J., Hussain S.M. Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages . J. Phys. Chem. B. 2007. 111, N 25. P. 7353-7359.
  71. Wang B., Zhang L., Bae S.C., Granick S. Nanoparticle-induced surface reconstruction of phospholipid mem­branes . Proc. Natl. Acad. Sci. USA. 2008. 105, N 47. P. 18171-18175.
  72. Yeagle P.L. Cell Membrane Features . Encycloped. Life Sci. 2001. P. 1-7.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.