Change in cryolability of tumor stem cells depending on growth phase of Ehrlich adenocarcinoma in vivo
Hol'tsev AM, Safranchuk OV, Bondarovych MO, Ostankov MV
Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov, Ukraine
DOI: https://doi.org/10.15407/fz57.04.068

Abstract
Cancer stem cells (CSC) are the main structural unit in initiation, support of in situ growth, as well as tumor metastasis during malignant development of various origin. Observed chemo- and radio-resistance of CSC make them a potential target cell to perform cryoeradication. We have performed a comparative study of changes in functional activity after cryo-preservation of CSC of two differentiation levels from Erlich adenocarcinoma (EAC) of various culture terms (EAC-7, EAC-14). It was found that in the case of EAC-7 the expression of cryosuppression in terms of cell functional state at the initial stages of development was bigger in high potency CD44hi cells comparing to more differentiated cells, forming general pool of cells in peritoneal cavity. And vice versa, in the “eldering” EAC-14 this effect was bigger in more differentiated cells comparing to less differentiated ones, even causing in latter (CD44hi) the growth stimulation. Moreover, the minimal pro-liferative activity of general population cells cEAC-14 during the first weeks was alternated at the next stage to its maximal expression among all the studied types of EAC cells of both culture terms. These data confirm again the fact, that during assessment of bioobject cryolability (cryostability) it is significant to determine not only cryopreservation conditions, but the initial state of the bioobject as well.
Keywords:
cancer stem cells, cryopreservation, Erlich adeno-carcinoma.
References
- Goltsev AN, Dubrava TG, Babenko NN, Ostanova LV, Matsevitay IY, Shatneva OM Modification of Structural and Functional Organization of Bone Marrow Stem Cells after the Effect of Low Temperature Conservation Factors . Probl. cryobiology. 2005. 15, No. 3. P. 362-366.
- Goltsev AN, Lutsenko ED, Ostankova LV, Dubrava TG, Opanasenko EV Membrane structures that determine the phenotypic characteristics and functional status of hematopoietic cells; their possible modification under the influence of cryopreservation factors. Part I . Ibid. 1995. 5, N 3. Pp. 19-30.
- Goltsev AN Dubrava TG, Ostankova LV Peculiarities of the influence of cryopreservation on the functional potential of hematopoietic stem cells of fetal liver of different gestation terms . Ibid. 2009. 19, N 2. Pp. 186 199.
- Yevtushenko O.I. Sagan DL, Kuzmenko OP Cryosurgical treatment of patients with colon cancer. K .: News, 2008. C. 20.
- Kazmin SD Changes in the structure of populations of cells of the Ehrlich tumor . Vopr. oncology. 1978. 24, N 10. Pp. 32-37.
- VV Menshikov, LN Delectorskaya, RP Zolotnitskaya Laboratory research methods in the clinic. Directory . Ed. VV Menshikov. M .: Medicine, 1987. 368 p.7. Novik AV, Moiseenko VM Theoretical background of adjuvant therapy of malignant tumors . Pract. oncology. 2007. 8, N 3. P. 109-117.
- Fedets OI Bioenergetics and proliferative activity of cryopreserved cells of Ehrlich adenocarcinoma: Abstract. diss. ... Cand. biol. Sciences. Kharkov, 1987 36 p.
- AA Tutsayeva, VA Agrenenko, LI Fedorova Cryopreservation of cell suspensions . Ed. A.A. Tsutsayeva. K .: Sciences. opinion, 1983. 240 p.
- Whisper B.C. Biochemical aspects of tumor growth. M .: Medicine, 1975. 304 p.
- Emmanuel N.M. Kinetics of experimental tumor processes. M .: Science, 1977. 419 p.
- Abraham B.K., Fritz P., McClellan M., Hauptvogel P., Athelogou M., Brauch H. Prevalence of CD44+. CD24-. low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis . Clin. Cancer Res. 2005. 11, N 3. P.1154-1159.
- Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke M.F. Prospective identification of tumorigenic breast cancer cells . Proc. Natl. Acad. Sci. USA. 2003. 100, N 7. P. 3983-3989.
CrossRef
PubMed PubMedCentral
- Anderson E.M., Jones D.R.E, Liu D.T.Y., Evans A.A. Gestation age and cell viability determine the effect of frozen storage on human fetal hematopoietic progenitor cell preparations . Fetal Diagn. Ther. 1996. 11, N 6. P. 427-432.
CrossRef
PubMed
- Bao S., Wu Q., McLendon R.E., Hao Y., Shi Q., Hjelmeland A.B., Dewhirst M.W., Bigner D.D., Rich J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response . Nature. 2006. 444, N 7120. P. 756-760.
CrossRef
PubMed
- Chong Y.K., Toh T.B., Zaiden N., Poonepalli A., Leong S.H., Ong C.E., Yu Y, Tan P.B., See S.J., Ng W.H., Ng I., Hande M.P., Kon O.L., Ang B.T., Tang C. Cryo-preservation of neurospheres derived from human glioblastom multiforme . Stem Cells. 2009. 27, N 1. P. 29-39.
CrossRef
PubMed PubMedCentral
- Clark D.M., Robilotto A.T., VanBuskirk R.G., Baust J.G., Gage A.A., Baust J.M. Targeted induction of apoptosis via TRAIL and cryoablation: a novel strategy for the treatment of prostate cancer . Prostate Cancer Prostatic Dis. 2007. 10, N 2. P. 175-184.
CrossRef
PubMed
- Eramo A., Ricci-Vitiani L., Zeuner A., Pallini R., Lotti F., Sette G., Pilozzi E., Larocca L.M., Peschle C, De Maria R. Chemotherapy resistance of glioblastoma stem cells . Cell Death Differ. 2006. 13, N 7. P. 1238-1241.
CrossRef
PubMed
- Fillmore C, Kuperwasser C. Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man? . Breast Cancer Res. 2007. 9,N 3. P.303-306.
CrossRef
PubMed PubMedCentral
- Goltsev A.N., Babenko N.N., Dubrava T.G. Ostankov M.V., Shatneva O.M. Modification of the state of bone marrow hematopoietic cells after cryopreservation . Intern. J. Refrigeration. 2006. 29, N 3. P. 358-367.
CrossRef
- Goltsev A.N., Safranchuk O.V., Bondarovich N.A. Peculiarities of effect of cryopreservation factors on morphofunctional organization of Ehrlich adenocarcinoma at different developmental stages . Possible directions for low temperature biology in the next five years: The 2008 Meeting and AGM, Copenghagen, 11-12 Sept. 2008. C, 2008. P.41.
- Hattori Y, Kato H., Nitta M., Takamoto S. Decrease of L-selectin expression on human CD34-cells on freeze-thawing and rapid recovery with short-term incubation . Exp. Hematol. 2001. 29, N 1 P. 114-122.
CrossRef
- Hermann P.C., Huber S.L., Herrler T., Aicher A., Ellwart J.W., Guba M., Bruns C.J., Heeschen C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer . Cell Stem Cell 2007. 1, N 3 P. 313-323.
CrossRef
PubMed
- Liu S., Dontu G., Wicha M.S. Mammary stem cells, self-renewal pathways, and carcinogenesis . Breast Cancer Res. 2005. 7, N 3. P.86-95.
CrossRef
PubMed PubMedCentral
- Nakshatri H. Radiation resistance in breast cancer: are CD44+. CD24-. proteosomelow. PKH26+ cells to blame? . Ibid. 2010. 12. N 2. P. 105.
CrossRef
PubMed PubMedCentral
- O'Brien C.A., Pollet A., Gallinger S., Dick J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice . Nature. 2007. 445, N 7123. P.106-110.
CrossRef
PubMed
- Prall F., Maletzki C, Linnebacher M. The EpCAMhigh. CD44high colorectal carcinoma stem cell phenotype is not preferentially expressed in tumor buds . Histopa-thology. 2010. 56. N 4. P.553-555.
CrossRef
PubMed
- Prince ME., Sivanadan R., Kaczorowski A., Wolf G.T., Kaplan M.J., Dalerba P., Weissman I.L., Clarke M.F., Ailles L.E. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma . Proc. Natl. Acad. Sci. USA. 2007. 104, N 3 P. 973-978.
CrossRef
PubMed PubMedCentral
- Sheridan C, Kishimoto H., Fuchs R.K., Mehrotra S., Bhat-Nakshatri P., Turner C.H., Goulet R., Badve S., Nakshatri H. CD44+. CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis . Breast Cancer Res. 2006. 8, N 5. P.R59.
CrossRef
PubMed PubMedCentral
- Zhang M., Rosen J.M. Stem cells in the etiology and treatment of cancer . Curr. Opin. Genet. Dev. 2006. 16, N 1 P. 60-64.
CrossRef
PubMed
|