Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2011; 57(4): 46-56


The endothelium-derived hyperpolarization factor as a reserve defence mechanism of vasodilatation under conditions of ionizing radiation

Ivanova IV, Kyslova OV, Solovĭov AI

    Institute of Pharmacology and Toxicology of Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz57.04.046

Abstract

The goal of this study was to determine the cellular mecha­nisms of vascular endothelial dysfunction in rats irradiated with Y-rays. Acetylcholine (Ach)-induced relaxation of rat tho­racic aorta rings was measured as a test of endothelial integrity and function. The data obtained allow suggest that endothelial function is impaired in aorta from g-irradiated rats mainly due to the loss of EDRF/NO-dependent, but not EDHF-dependent relaxation. It has been shown that г-irradiation reduced the Ach-induced NO-release measured as nitrite anion content. Experiments on isolated rat aortic smooth muscle cells using whole-cell patch clamp technique demonstrated that irradiation led to a significant decrease in outward potassium currents. However, Y-ray irradiation was without effect on K+-current carried through apamine-sensitive channels while the current through charybdotoxin-sensitive channels was increased as compared to cells from control animals. The data suggest that EDHF is resistant to ionized radiation and may constitute a crucial reserve mechanism for maintenance of blood flow un­der radiation. Therefore, it is likely that the subsequent stud­ies related to EDHF identification will be important for new drugs development and targeted pharmacological intervention at endothelium dysfunction in case of radiation impact.

Keywords: endothelium-derived hyperpolarizing factor, ni-Ендотелійзалежний фактор гіперполяризаціїISSN 0201-8489 Фізіол. журн., 2011, Т. 57, № 4 55tric oxide, endothelium, potassium channels, smooth musclecells, irradiation

References

  1. Kotsyuruba AV, Semikopna TV, Viktorov OP Method of quantitative determination of nitrite anion in biological fluid . Pat. Of Ukraine UA 31600 A, G 01 N 33. 52. Bull. No. 7-11 of December 15, 2000.
  2.  
  3. Beckman J.A., Thakore A., Kalinowski B.H., Harris J.R, Creager M.A. Radiation therapy impairs endothelium-dependent vasodilation in humans . J. Amer. Coll. Cardiol. 2001. 37, N 3. P. 761-765. CrossRef  
  4. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utiliz­ing the principle of proteing-dye binding . Anal. Biochem. 1976. 72. P. 248-254. CrossRef PubMed
  5.  
  6. Campbell W.B, Falck J.R. Arachidonic acid metabo­lites as endothelium-derived hyperpolarizing factors . Hypertension. 2007. 49. P.590-596. CrossRef PubMed
  7.  
  8. Chataigneau T., Fleming I., Busse R. EDHF-mediated responses induced by bradykinin in the porcine coronary artery . EDHF 2000. P. 187-194.
  9.  
  10. Chawengsub Y., Gauthier K., Campbell W.B. Role of arachidonic acid lipoxygenase metabolites in the regulation of vascular tone . Amer. J. Physiol. Heart. Circ. Physiol. 2009. 297, N 2. P. 495-507. CrossRef PubMed PubMedCentral
  11.  
  12. Chen G., Suzuki H., Weston A.H. Acetylcholine re­leased endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels . Brit. J. Pharmacol. 1988. 95. P. 1165-1174. CrossRef PubMed PubMedCentral
  13.  
  14. Cheong A., Bingham A.J, Li J., Kumar B., Sukumar P., Munsch C, Buckley N.J., Neylon C.B., Porter K.E., Beech D.J, Wood I.C. Downregulated REST transcrip­tion factor is a switch enabling critical potassium channel expression and cell proliferation . Mol. Cell. 2005. 20. P. 45-52. CrossRef PubMed
  15.  
  16. Cohen R.A., Plane F., Najibi S., Huk I., Malinski T, Garland C.J. Nitric oxide is the mediator of both en­dothelium dependent relaxation and hyperpolarization of the rabbit carotid artery . Proc. Natl. Acad. Sci. USA. 1997. 94. P. 4193-4198. CrossRef PubMed PubMedCentral
  17.  
  18. Coleman H.A, Tare M., Parkington H. Endothelial potassium channels, endothelium-dependent hyperpo­larization and the regulation of vascular tone in health and disease . Clin. Exp. Pharmacol. Physiol. 2004. 31, N 9. P.641-649. CrossRef PubMed
  19.  
  20. Crane G.J, Gallagher N., Dora K.A, Garland C.J. Small-and intermediate-conductance calcium-activated K+ channels provide different facets of endothelium-de­pendent hyperpolarization in rat mesenteric artery . J. Physiol. 2003. 553. P.183-189. CrossRef PubMed PubMedCentral
  21.  
  22. Crane G.J, Garland C.J. Thromboxane receptor stimu­lation associated with loss of SKCa activity and reduced EDHF responses in the rat isolated mesenteric artery . Brit. J. Pharmacol. 2004. 142. P. 43-50. CrossRef PubMed PubMedCentral
  23.  
  24. Dora K.A, Gallagher N.T, McNeish A., Garland C.J. Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries . Circ. Res. 2008. 102, N 10. P.1 148-50. CrossRef PubMed PubMedCentral
  25.  
  26. Dora K.A. Coordination of vasomotor responses by the endothelium . Circ. J. 2010. 74, N 2. P. 226-232. CrossRef PubMed
  27.  
  28. Ellis A., Triggle C.R. Endothelium-derived reactive oxygen species: their relationship to endothelium-de­pendent hyperpolarization and vascular tone . Can. J. Physiol. Pharmacol. 2003. 81. P. 1013-1028. CrossRef PubMed
  29.  
  30. FfilHtou M., Vanhoutte P.M. EDHF: an update . Clin. Sci. (Lond.). 2009. 117, N 4. P.139-155. CrossRef PubMed
  31.  
  32. Feletou M., Vanhoutte P.M. Endothelium-derived hy­perpolarizing factor: where are we now? . Arterioscler. Thromb. Vasc. Biol. 2006. 26. P.1215-1225. CrossRef PubMed
  33.  
  34. Feletou M., Vanhoutte P. EDHF: The Complete Story. USA: Taylor&Francis. 2006. 312 P. CrossRef  
  35. Feletou M., Vanhoutte P.M. Endothelium-dependent hyperpolarization: past beliefs and present facts . Ann. Med. 2007. 39.- P. 495-516. CrossRef PubMed
  36.  
  37. Garland C.J, Hiley C.R, Dora K.A. EDHF: spreading the influence of the endothelium . Brit. J. Pharmacol. 2010. Dec 6.
  38.  
  39. Gauthier K., Chawengsub Y., Goldman D., Conrow R.E., Anjaiah S., Falck J., Campbell W.B. 11(R), 12(S),15(S)-trihydroxyeicosa-5(Z),8(Z),13(E)-trienoic acid: an endothelium-derived 15-lipoxygenase metabo­lite that relaxes rabbit aorta . Amer. J. Physiol. Heart. Circ. Physiol. 2008. 294. P. 1467-1472. CrossRef PubMed
  40.  
  41. Gluais P., Edwards G., Weston A., Falck J.R., Vanhoutte P.M., Ffilfitou M. Role of SKCa and IK in endothelium-dependent hyperpolarizations ofthe guinea-pig isolated carotid artery . Brit. J. Pharmacol. 2005. 144, N 4. N P. 477-485. CrossRef PubMed PubMedCentral
  42.  
  43. Grgic I.; Kaistha B.P., Hoyer J., Kiihler R. Endothelial Ca activated K+ channels in normal and impaired EDHF-dilator responses relevance to cardiovascular pathologies and drug discovery . Ibid. 2009. 157, 4. P. 509-526. CrossRef PubMed PubMedCentral
  44.  
  45. Griffith T.M. Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis? . Ibid. 2004. 141, N 6. P. 881-903. CrossRef PubMed PubMedCentral
  46.  
  47. Ivanova I.V, Tishkin S.M., Kislova O.V Kizub I.V, Soloviev A.I. The EDHF component of the endothe­lium-dependent relaxation constitutes a reserve mecha­nism of vasodilatation under radiation impact . In: 5-th International EDHF Symposium Endothelium, Vasoactive Factors and Inflammation. 2008. Tampere, Finland. 30 P.
  48.  
  49. Jackson W.F. Potassium Channels in the Peripheral Microcirculation . Microcirculation.- 2005. 12, N 1. P. 113-127. CrossRef PubMed PubMedCentral
  50.  
  51. Ktshler R, Wulff H., Eichler I., Kneifel M., NeumannD., Knorr A., Grgic I., Kflmpfe D., Si H., Wibawa J., Real R., Borner K., Brakemeier S., Orzechowski H.D., Reusch H.P., Paul M., Chandy K.G., Hoyer J. Block­ade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis . Circulation. 2003. 108. P. 1119-1125. CrossRef PubMed
  52.  
  53. Neylon C.B., Lang R.J., Fu Y., Bobik A., Reinhart P.H. Molecular cloning and characterization of the interme­diate-conductance Ca2+-activated K+-channel in vascu­lar smooth muscle: relationship between K(Ca) channel diversity and smooth muscle cell function . Circ. Res. 1999. 85. P. 33-43. CrossRef PubMed
  54.  
  55. Nilius B, Droogmans G. Ion channels and their func­tional role in vascular endothelium . Physiol. Rev. 2001. 81. P. 1415-1459. CrossRef PubMed
  56.  
  57. Park Y, Capobianco S., Gao X., Falck J.R., Dellsperger K.C., Zhang C. Role of EDHF in type 2 diabetes-in­duced endothelial dysfunction . Amer. J. Physiol. Heart. Circ. Physiol. 2008. 295. P. 1982-1988. CrossRef PubMed PubMedCentral
  58.  
  59. Qi F.Z., Sugihara T., Hattori Y, Kanno M., Abe K. Functional and morphological damage of endothelium in rabbit ear artery following irradiation with cobalt 60 . Brit. J. Pharmacol. 1998. 123, N 4. P. 653-660. CrossRef PubMed PubMedCentral
  60.  
  61. Sandow S.L., Neylon C.B., Chen M.X., Garland C.J. Spatial separation of endothelial small- and intermedi­ate-conductance calcium-activated potassium channels (K ) and connexins: possible relationship to vasodila-torC afunction? . J. Anat. 2006. 209. P.689-698. CrossRef PubMed PubMedCentral
  62.  
  63. Selemidis S., Cocks T. Myoendothelial and circumfer­ential spread of endothelium-dependent hyperpolariza-tion in coronary arteries . EDHF. 2000. P. 75-86.
  64.  
  65. Shimokawa H., Yasutake H., Fujii K., Owada M.K., Nakaike R., Fukumoto Y, Takayanagi T., Nagao T., Egashira K., Fujishima M., Takeshita A. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation.. J. Cardiovasc. Pharmacol. 1996. 28. P. 703-711. CrossRef PubMed
  66.  
  67. Soloviev A.I., Tishkin S.M., Ivanova I.V., Zelensky S.N., Dosenko V.E., Kyrychenko S.V., Moreland R.S. Function and mRNA expression of large conductance Ca2+-activated K+-channels in rat aorta smooth muscle cells under ionized irradiation . Life Sci. 2009. 84. P. 164-171. CrossRef PubMed
  68.  
  69. Soloviev A.I., Tishkin S.M., Zelensky S.N., Ivanova I.V., Kizub I.V., Pavlova A.A., Moreland R.S. Ionizing radiation alters myofilament calcium sensitivity in vas­cular smooth muscle: Potential role of protein kinase C . Amer. J. Physiol. Reg. Integr. Compar. Physiol. 2005. 289. P. 755-762. CrossRef PubMed
  70.  
  71. Soloviev A., Tishkin S., Parshikov A. Mosse I., Stefanov A., Gurney A., Osipenko O. The EDHF-dependent but not the NO-dependent component of the acetylcholine-induced relaxation of the rabbit aorta resistant to ionized radiation . Endothelium-dependent Hyperpolarizations. EDHF-2000. P. 400-410.
  72.  
  73. Sugihara T., Hattori Y, Yamamoto Y, Qi F., Ichikawa R., Sato A., Liu M., Abe K., Kanno M. Preferential impairment of nitric oxide-mediated endothelium-depen­dent relaxation in human cervical arteries after irradiation . Circulation. 1999. 100, N 6. P. 635-641. CrossRef PubMed
  74.  
  75. Sun J., Zhang X., Broderick M., Fein H. Measurement of nitric oxide production in biological systems by using Griess reaction assay . Sensors. 2003. 3. P. 276-284. CrossRef  
  76. Taddei S., Versari D., Cipriano A., Ghiadoni L., Galetta F., Franzoni F., Magagna A., Virdis A., Salvetti A. Iden­tification of a cytochrome P450 2C9-derived endothe-lium-derived hyperpolarizing factor in essential hy­pertensive patients . J. Amer. Coll. Cardiol. 2006. 48. P. 508-515. CrossRef PubMed
  77.  
  78. Tharp D.L., Wamhoff B.R., Wulff H., Raman G., Cheong A., Bowles D.K. Local delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-in-duced coronary smooth muscle phenotypic modula­tion and limits stenosis . Arterioscler. Thromb. Vasc. Biol. 2008. 28. P. 1084-1089. CrossRef PubMed PubMedCentral
  79.  
  80. Tishkin S.M., Rekalov V.V., Ivanova I.V., Moreland R.M., Soloviev A.I. Ionized non-fatal whole-body irradiation inhibits Ca2+-dependent K+-channels in en­dothelial cells of rat coronary artery: possible contribution to depression of endothelium-dependent vascular relaxation . J. Radiat. Biol. 2007. 83, N .3. P. 161-169. CrossRef PubMed
  81.  
  82. Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A. Importance of endothelium-derived hyperpolarizing factor in human arteries . J. Clin. Invest.- 1997.- 100.- P. 2793-2799. CrossRef PubMed PubMedCentral
  83.  
  84. Wei C.M., Hu S., Miller V.M., Burnett J.C Vascular actions of C-type natriuretic peptide in isolated por­cine coronary arteries and coronary vascular smooth muscle cells . Biochem. Biophys. Res. Commun. 1994. 205. P.765-771. CrossRef PubMed
  85.  
  86. Zygmunt P.M.; Edwards G.; Weston A.H. Larsson B., Hiigestfltt E.D. Involvement of voltage-dependent po­tassium channels in the EDHF-mediated relaxation of rat hepatic artery . Brit. J. Pharmacol. 1997. 121, N 1. P. 141-149. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.