Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2011; 57(4): 3-11


The effect of hydrogen sulfide on contractile activity of the vascular smooth muscles in rats

Semenykhina OM, Baziliuk OV, Korkach IuP, Sahach VF

    Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz57.04.003


Abstract

The effect of endogenous and exogenous hydrogen sulfide (H2S) on contractile activity of vascular smooth muscle (VSM) was studied. The introduction of substrate synthesis H2S L-cys-teine and its donor NaHS in vitro caused concentration-depen­dent relaxation of VSM of aorta and portal vein. Low concentrations of hydrogen sulfide donor (10-5 mol/L) caused vasoconstriction of both types of the vessels. It was shown that the reaction of relaxation of VSM in response to NaHS is independent from endothelium. It was revealed that VSM of portal vein are more sensitive to the effects of H2S than VSM of aorta. Removing of aorta periadventitial adipose tissue showed no relaxation reply to the hydrogen sulfide donor NaHS in 70% of experiments. Some of the cellular mecha­nisms of hydrogen sulfide action were established, namely relaxation of aorta is depended on KATP channel activation. This is manifested by a lack of relaxation of the aortic VSM due to KATP channel inhibitor glibenclamide.

Keywords: сероводород, L-цистеин, NaHS, глибен-кламид, аорта, воротная вена, эндотелий, адвентиция.

References

  1. Abe K., Kimura H. The possible role of hydrogen sul-fide as an endogenous neuromodulator . J. Neurosci. 1996. 16. P. 1066-1071. CrossRef PubMed PubMedCentral
  2.  
  3. Geng B., Yang J., Qi Y., Zhao J., Pang Y. , Du J., Tang C. H2S generated by heart in rat and its effects on cardiac function . Biochim. and Biophys.Res. Commun. 2004. 313. P. 362-368. CrossRef PubMed
  4.  
  5. Cheng Y. , Ndisang J.F., Tang G., Cao K., Wang R. Hydrogen sulfide-induced relaxation of mesenteric artery beds of rats . Amer. J. Physiol. Heart Circ. Physiol. 2004. 279. P.52082-52086.
  6.  
  7. Mancardi D., Penna C, Merlino A., Soldato P. D., Wink D.A., Pagliaro P. Physiological and pharmaco-logical features of the novel gasotransmitter: Hydro­gen sulde . Biochimet. Biophys. Acta. 2009. 1787. P. 869-872. CrossRef PubMed PubMedCentral
  8.  
  9. Doeller J.E., Isbell T.S., Benavides G., Koenitzer J., Patel H., Patel R.P., Lancaster J.R. Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues . Anal. Biochem. 2005. 341. P.40-50. CrossRef PubMed
  10.  
  11. Lowicka E., Beltowski J. Hydrogen sulfide (H2S) the third gas of interested for pharmacologists . Pharmacol. Rep. 2007. 59. P.4-24.
  12.  
  13. Fang L., Zhao J.,Chen Y. Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator . J. Hypertens. 2009. 27. P. 2174-2185. CrossRef PubMed
  14.  
  15. Furchgott R.F., Zawadski J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscles by acetylcholine . Nature. 1980 288. P. 373-376. CrossRef PubMed
  16.  
  17. Iciek M., Bilska A., Ksiazek L., Serebro Z., Wlodec L. Allyl disulfide as donor and cyanide as acceptor of sulfane sulfur in the mouse tissues . Pharmacol. Rep. 2005. 57. P.212-218.
  18.  
  19. L. Li, P. K. Moore: Putative biological roles of hydro­gen sulfide in health and disease: a breath of not so fresh air ? . Trends in Pharmacolog. Scien. 2007. 2. P. 84-90. CrossRef PubMed
  20.  
  21. Nagata T., Kage S., Kimura K., Kudo K., Noda M. Sulfide concentration in postmortem mammalian tis­sues . J. Forensic. Sci. 1990. 35. P.706-712. CrossRef  
  22. Reiffenstein R.J, Hulbert W.C, Roth S.H. Toxicology of hydrogen sulfide . Annu. Rev. Pharmacol. Toxicol. 1992. 32. P.109-134. CrossRef PubMed
  23.  
  24. Kubo S., Doe I., Kurokawa Y, Nishikawa H., Kawabata A. Direct inhibition of endothelial nitric oxide syn­thase by hydrogen sulfide: Contribution to dual modula­tion of vascular tension . Toxicology. 2007. 232 P.138-146. CrossRef PubMed
  25.  
  26. Stipanuk M.H. Sulfur amino acid metabolism: path­ways for production and removal of homocysteine and cysteine . Annu. Rev. Nutr. 2004. 24. P. 539-577. CrossRef PubMed
  27.  
  28. Tang G., Wu L., Liang W., Wang R. Direct stimulation of, K ATF channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells . Mol. Pharmacol. 2005. 68. P. 1757-1764. CrossRef PubMed
  29.  
  30. Wagner C.A. Hydrogen sulfide: a new gaseous signal molecule and blood pressure regulator . J. Nephrol. 2009. 22. N 2. P. 173-179.
  31.  
  32. Warenycia M.W., Goodwin L.R., Benishin C.G., Reiffenstein R.J., Francom D.M., Taylor J.D., Dieken F.P. Acute hydrogen sulfide poisoning. Demonstation of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels . Biochem. Pharmacol. 1989. 38. P. 973-981. CrossRef  
  33. Zhao W., Wang R. H2S-induced vasorelaxation and underlying cellular and molecular mechanisms . Amer. J. Physiol. Heart. Circ. Physiol. 2002. 283. P.474- 480. CrossRef PubMed
  34.  
  35. Zhao W., Zhang J., Lu Y., Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous K(ATP) channel opener . Embo. J. 2001. 20. P.6008- 6016. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.