Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2011; 57(3): 69-75


Use of mathematical models in study of nitric oxide, myoglobin and cell oxygen regimen

Liabakh KH

    International Scientific and Training Center for Information Technologies and Systems National Academy of Sciences Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz57.03.069


Abstract

The influence of nanomolar concentrations of NO on oxygen regimen of muscle cells was investigated. The intracellular dis­tribution of oxygen consumption rates, pO2, NO and myoglo-bin was calculated by mathematical modeling of diffusion reactions of O2, NO and myoglobin in the muscle cell. The diffusion of O2 and NO from blood vessel surface into cell was taken into account. According to calculations, NO roughly regulates the oxygen regimen of cell, because it increases the tissue pO2 level by inhibition of mitochondria activity in the whole cell space. The presence of myoglobin is capable poten­tially to modulate the influence of NO on oxygen regimen. Myoglobin not only contributes to tissue O2 supply, but it can locally affect the NO concentration. Acting as an NO scavenger under normoxia and as an NO producer under hy-poxia, myoglobin together with NO can provide fine adjustment of muscle oxygen regimen via an increase in tissue pO2 and elimination a mismatch between oxygen supply and de­mand.

Keywords: mathematical modeling, nitric oxide, myoglobin,oxygen, oxygen regimen, myocite.

References

  1. Moibenko AA, Dosenko VE, Parkhomenko AN Endogenous mechanisms of cardioprotection as a basis for pathogenetic therapy of heart disease. K .: Sciences. opinion, 2008. 517 p.
  2.  
  3. Moĭbenko OO, Sahach VF, Shapoval LM, Solovĭov AI, Baziliuk OV, Zhukova AV, Tkachenko MM, Marchenko SM. The role of the endothelium and of biologically active substances of endothelial origin in regulating blood circulation and cardiac activity. . Fiziol Zh.  - 1997. 43, N 1-2. pp. 3-18.
  4.  
  5. Brown G., Cooper C. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS. 1994. Lett. 19. 356. P. 295-298. CrossRef  
  6. Buerk D. Nitric oxide regulation of microvascular oxy­gen . Antioxidants & Redoc signaling. 2007. 9. P.829-843. CrossRef PubMed
  7.  
  8. Buerk D., Lamkin-Kennard K., Jaron D. Modeling the influence of superoxide dismutase on superoxide and nitric oxide interactions including reversible inhibition of oxygen consumption. Free Radic.Biol.Med. 2003. 34. P.1488-1503. CrossRef  
  9. Calvert J., Lefer D. Clinical translation of nitrite therapy for cardiovascular diseases. Nitric. Oxide. 2010. 22. P 91-97. CrossRef PubMed PubMedCentral
  10.  
  11. Clanton T. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J. Appl. Physiol. 2007. 102. P. 2379-2388. CrossRef PubMed
  12.  
  13. Cossins A., Berenbrink M. Myoglobin's new clothes. Nature. 2008. 454. P. 416-417. CrossRef PubMed
  14.  
  15. Fhigel U., Merx M.W., Godecke A., Decking U.K., Schrader J. Myoglobin: a scavenger of bioactive NO. PNAS. 2001. 98. P. 735-740. CrossRef  
  16. Flqgel U., Fago A., Rassaf T. Keeping the heart in bal­ance: the functional interactions of myoglobin with nitrogen oxides. J. Exp. Biol. 2010. 213. P. 2726-2733. CrossRef PubMed
  17.  
  18. Hendgen-Cotta U., Fligel U., Kelm M., Rassaf T. Unmasking the Janus face of myoglobin in health and disease . Ibid. P. 2734-2740 . CrossRef PubMed
  19.  
  20. Hendgen-Cotta B, Kelm M, Rassaf T. A highlight of myoglobin diversity: the nitrite reductase activity dur­ing myocardial ischemia-reperfusion.Nitric Oxide. 2010. 22. P.75-82. CrossRef PubMed
  21.  
  22. Jensen F. The role of nitrite in nitric oxide homeostasis: a comparative perspective . Biochim. Biophys. Acta. 2009. 1787. P. 841-848. CrossRef PubMed
  23.  
  24. Lyabakh K. Mathematical modeling of oxygen trans­port in skeletal muscle during exercise: hypoxia and VO max. Adv. Exp. Med. Biol. 1999. 471. P. 5285-593.
  25.  
  26. Lyabakh K., Mankovskaya I. Oxygen transport to skel­etal muscle working at VO max in acute hypoxia: theo-retical prediction.Comparative Biochem. and Physiol. Part A. 1999. 132. P. 53-60. CrossRef  
  27. Murray J.On the role of myoglobin in muscle respiration .J. Theor. Biol. 1974. 47. P.115-126. CrossRef  
  28. Pellegrino D., Parisella M. Nitrite as a physiological source of nitric oxide and a signalling molecule in the regulation of the cardiovascular system in both mammalian and non-mammalian vertebrates. Recent Pat. Cardiovasc. Drug Discov. 2010. 5, N 2. P.91-96. CrossRef PubMed
  29.  
  30. Rassaf T., Fhigel U., Drexhage C., Hendgen-Cotta U., Kelm M., Schrader J. Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function.Circulat. Res. 2007. 100. P.1749-1754. CrossRef PubMed
  31.  
  32. Riggs A., Gorr T. A globin in every cell?.PNAS. 2006. 103. P. 2469-2470. CrossRef PubMed PubMedCentral
  33.  
  34. Shiva S., Huang Z., Grubina R., Sun J., Ringwood L.A., MacArthur P.H., Xu X., Murphy E., Darley-Usmar V.M., Gladwin M.T. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mi­tochondrial respiration. Cirulat. Res. 2007. 100. P.654-661. CrossRef PubMed
  35.  
  36. Thomas D., Liu X., Kantrow S., Lancaster J. The bio­logical lifetime of nitric oxide: Implications for the perivascular dynamics of NO and O2 .PNAS. 2001. 98. P.355-360. CrossRef

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.