Role of nitric oxide in the development of the myocardial contractile reactions in trained animals
Shymans'ka TV, Hoshovs'ka IuV, Sahach VF.
O.O. Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz56.05.003
Abstract
Intensive constitutive production of nitric oxide (NO) during physical training improves vasodilatation and heart function. However, it remains unclear how NO takes part in myocardial adaptation to workload, which is accompanied by an increased heart inflow and intracellular calcium content. Using isolated rat heart by Langendorf preparation, we studied myocardial response to gradually increased left ventricular volume (Frank-Starling low) and increasing concentration of Ca2+ in the perfu-sion solution (from 1.7mM to 12,5 mM) in trained and untrained rats. It was shown that 4 weeks swimming course improved heart function: heart rate was decreased; contractile activity (dP/dt max) and coronary flow were increased by 20% and 33%, respectively. Equal volume stretching of balloon in left ventricle provoked greater contraction in trained comparing to untrained hearts, demonstrating extended functional reserves after swimming course. Mitochondrial membrane potential was significantly increased in hearts of trained rats. Furthermore, training prevented fast increase of the end dias-tolic pressure during calcium upload. Mitochondrial factor release due to opening of mitochondrial permeability transition pore (MPTP) in trained hearts was detected at higherconcentrations of calcium that reveals extended calcium capacity of mitochondria and lesser sensitivity of MPTP to its inductor – calcium. Blockade of NO synthesis with L-NAME application of (10-4 M for 15 min) abolished reaction of trained heart during Frank-Starling and calcium upload. Thus, heart adaptation to physical training and extension of functional reserves in heart are provided by endogenous NO production.
Keywords:
nitric oxide, Frank-Starling low, physical training,calcium upload, mitochondrial permeability transition,membrane potential
References
- Basiluk OV, Kotsyuruba AV, Stepanenko LG, Talanov CO., Korkach YP, Sagach VF Age-specific features of changes in the system of nitric oxide in vessels and plasma under conditions of adaptation to physical activity . Fiziol zh. 2010. 56. N 1. p. 3-12.
- Kosterin S.A., Bratkova N.F., Kurskii M.D. Rol' sarkolemmi i mitohondrii v obespechenii kal'tsie-vogo kontrolya rasslableniya miometriya . Biohimiya. 1985. 50, N 8. S. 1350-1361.
- Sagach V.F., Tkachenko M.N., Dmitrieva A.V. O roli endoteliya v reaktsii reaktivnoi giperemii koronarnih sosudov .Dokl. AN SSSR. 989. 307, N 3. S. 765-767.
- Sagach VF, Shimanska TV, Nadtochiy SM. The factor released during reperfusion of the ischemic heart may be a marker of mitochondrial pore opening . Fiziol zh. 2003. 49, N 4. p. 6-12.
- Talanov S.A., Burii V.A., Sagach V.F. Vliyanie adaptatsii k dozirovannim fizicheskim nagruzkam na funktsiyu miokarda kris . Neirofiziologiya. 2009. 41, N 1. S. 41-47.
- Chorna SV., Talanov SA, Strutinskaya NA, Vavilova GL, Kotziuruba AV, Gaidai MI, Sagach VF The effect of prolonged physical activity on changes in the function of the heart of rats during ischemia-reperfusion, calcium sensitivity of induced mitochondrial pore and the expression of cleavage protein 3 . Fiziol zh. 2010. 56, N 1. P.13-21.
CrossRef
- Shimanskaya TV, Dobrovol'skii F.V., Vavilova G.L. N.A.Strutinskaya, E.V.Rudik, Sagach V.F. NO-zavisimaya modulyatsiya chuvstvitel'nosti otkritiya mitohondrial'noi pori pri ishemii-reperfuzii izolirovannogo serdtsa . Ros.fiziol.zhurn. im. I.M. Sechenova. 2009. 95, N 1. S.28-37.
- Abete P., Calabrese C., Ferrara N., Cioppa A., Pisanelli P., Cacciatore F., Longobardi G., Napoli C, Rengo F. Exercise training restores ischemic preconditioning in the aging heart . J. Amer. Coll. Cardiol. 2000. 36. P.643-650.
CrossRef
- Balakirev M., Khramtsov V., Zimmer G. Modulation of the mitochondrial permeability transition by nitric oxide . Eur. J. Biochem. 1997. 246. P. 710-718.
CrossRef
PubMed
- Bernstein R.D., Ochoa F.Y., Xu X.B., Forfia P., Shen W., Thompson C.I., Hintze T.H. Function and production of nitric oxide in the coronary circulation of the conscious dog during exercise. Circulat. Res. 1996. 79. P. 840-848.
CrossRef
PubMed
- Borutaite V., Mildaziene V., Brown G.C, Brand M.D. Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia? . Biochim. Biophys. Acta. 1995. 1272. P. 154-158.
CrossRef
- Bowles D.K ., Starnes J.W. Exercise training improves metabolic response after ischemia in isolated working rat heart . J. Appl. Physiol. 1994. 76, issue 4. P.1608-1614.
CrossRef
PubMed
- Brand M.D. in Brown G.C, Cooper CE. Editors, Bioenergetics: a practical approach. Oxford.: IRL Press. 1995. P. 39-62.
- Brookes P., Salinas E., Darley-Usmar K., Eiserich J.P., Freeman B.A., Darley-Usmar V.M., Anderson P.G. Concentration-dependent effect of nitric oxide on mitochondrial permeability transition and cytochrom c release . J. Biol. Chem. 2000. 275. P.20474-20479.
CrossRef
PubMed
- Dedkova E.N., Blatter L.A. Characteristics and function of cardiac mitochondrial nitric oxide synthase . J. Physiol. 2009. 587, N 4. P.851-872.
CrossRef
PubMed PubMedCentral
- Endo T., Imaizumi T., Tagawa T., Shiramoto M., Ando S., Takeshita A. Role of nitric oxide in exercise-induced vasodilation of the forearm . Circulat. 1994. 90. P. 2886-2890.
CrossRef
PubMed
- French J.P., Hamilton K.L., Quindry J.C., Lee Y., Upchurch P.A., Powers S.K. Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain . FASEB J. 2008. 22, N 8. P. 2862-2871.
CrossRef
PubMed PubMedCentral
- Hoydal M.A., Wisloff U., Kemi O.J., Britton S.L., Koch L.G., Smith G.L., Ellingsen O. Nitric oxide syntase type-1 modulates cardiomyocyte contractility and calcium handling: assotiation with low intrinsic aerobic capacity . Eur. J. Cardiovasc. Prev. Rehabil. 2007. 14. P.319-325.
CrossRef
- Hwang H., Reiser P.J., Billman G.E. Effects of exercise training on contractile function in myocardial trabecule after ischemia-reperfusion. J. Appl. Physiol. 2005. 99,N 1. P.230-236.
CrossRef
PubMed
- Quindry J.C, Hamilton K.L., French J.P., Lee Y., Murlasits Z., Tumer N., Powers S.K. Exercise-induced HSP-72 elevation and cardioprotection against infarct and apoptosis. J. Appl. Physiol. 2007. 103. P. 1056-1062.
CrossRef
PubMed
- Kavazis A.N., McClung J.M., Hood D.A., Powers S.K. Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli . Amer. J. Physiol. 2008. 294. P. H928-H935.
CrossRef
PubMed
- Kemi O.J., Ellingsen O., Smith G.L., Wisloff U. Exercise-induced changes in calcium handling in left ven-tricular cardiomyocytes . Front Biosci. 2008. 13. P.356-368. 23.Kingwell B.A. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease . FASEB J. 2000. 14. P.1685-1696.
CrossRef
PubMed
- Le Page C, Noirez P., Counrty J., Riou B., Swynghe-dauw B., Besse S. Exercise training improves functional post-ischemic recovery in senescent heart. Exp. Geront. 2009. 44. P.177-182.
CrossRef
PubMed
- Maiorana A., O'Driseoll, Tayler R, Green D. Exercise and the nitric oxide vasodilator system . Sports Med. 2003. 33,N 7. P.1013-1035.
CrossRef
PubMed
- Marcil M., Bourduas K., Ascah A., Burelle Y. Exercise training induces respiratory substrate-specific decrease in Ca2 induced permeability transition pore opening in heart mitochondria . Amer. J. Physiol. 2006. 290. P. H1549-H1557.
CrossRef
PubMed
- Nadtochiy S.M., Tompkins A., Brookes P.S. Different mechanisms of mitochondrial proton leak in ischaemia. reperfusion injury and precondition: implications for pathology and cardioprotection . Biochem. J. 2006. 395. P. 611-618.
CrossRef
PubMed PubMedCentral
- Prendergast B.D., Sagach V.F., Shah A.M. Basal release of nitric oxide augments the Frank-Starling response in the isolated heart . Circulation. 1997. 96, N 4. P.1320-1329.
CrossRef
PubMed
- Rimbaud S., Garnier A., Ventura-Clapier R. Mitochondrial biogenesis in cardiac pathology . Pharmacol. Res. 2009. 61. P.131-138.
CrossRef
- Roberts C.K., Barnard R.J., Jasman A., Balon T.W. Acute exercise increases nitric oxide synthase activity in skeletal muscle . Amer. J. Physiol. 1999. 277. P. E390-E394.
CrossRef
PubMed
- Sagach V.F., Kindybalyuk A.M., Kovalenko T.N. Functional hyperemia of skeletal muscle: role of endothelium . J.Cardial. Pharmacol. 1992. 20, suppl. 12. P.S170-S175.
CrossRef
PubMed
- Shimanskaya T.V Goshovska Y, Sagach V. The role of mitochondrial permeability transition pore in modulation of oxygen cost of myocardial work by endogenous NO. In: Advances in Biomedical Research. Cambridge. 2010. P.313-317.
- Starnes J.W., Barnes B.D., Olsen M.E. Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca2+-induced dysfunction . J. Appl. Physiol. 2007. 102. P. 1793-1798.
CrossRef
PubMed
- Stolen T.O., Hoydal M.A., Kemi O.J., Catalucci D., Ceci M., Aasum E., Larsen T., Rolim N., Condorelli G., Smith G.L., Wislmff U. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy . Circulat. Res. 2009. 105. P.527-536.
CrossRef
PubMed
- Strensberg A. Keller C, Hillig T., Frosig C, Wojtaszew-ski J.F., Pedersen B.K., Pilegaard H., Sander M. Nitric oxide production is a proximal signaling event controlling exercise-induced mRNA expression in skeletal muscle. FASEB J. 2007. 21, N 11. P.2683-2694.
CrossRef
PubMed
- Sun M., Zhang M., Gu J., Qian F.L., Gu J.Z., Chen H. Effects of different levels of exercise volume on endot-helium-dependent vasodilatation: roles of nitric oxide synthase and heme oxygenase . Hypertens Res. 2008. 31, N 5. P. 805-816.
CrossRef
PubMed
- Tatchum-Talom R,Schulz R., McNeill J.R., Khadour F.H. Upregulation of neuronal nitric oxide synthase in skeletal muscle by swim training . Amer. J. Physiol. 2000. 279,N 4. P.H1757-H1766.
CrossRef
PubMed
- Taylor R.P., Ciccolo J.T., Starnes J.W. Effect of exercise training on the ability of the rat heart to tolerate hydrogen peroxide . Cardiovasc. Res. 2003. 58, N 3. P.575-581.
CrossRef
- Yamashita N., Hoshida S., Otsu K., Asahi M., Kuzuya T., Hori M. Exercise provides biphasic cardioprotection via manganese superoxide dismutase activation . J. Exp. Med. 1999. 189. P. 1699-1706.
CrossRef
PubMed PubMedCentral
|