Warning: include(phj2-admin/kernel/config.php): failed to open stream: No such file or directory in /zstorage3/vhosts/fz.kiev.ua/httpdocs/index.php on line 45

Warning: include(): Failed opening 'phj2-admin/kernel/config.php' for inclusion (include_path='.:/usr/local/share/pear') in /zstorage3/vhosts/fz.kiev.ua/httpdocs/index.php on line 45

Warning: Cannot modify header information - headers already sent by (output started at /zstorage3/vhosts/fz.kiev.ua/httpdocs/index.php:45) in /zstorage3/vhosts/fz.kiev.ua/httpdocs/kernel/content.php on line 3

Warning: array_unique() expects parameter 1 to be array, null given in /zstorage3/vhosts/fz.kiev.ua/httpdocs/kernel/content.php on line 77

Warning: Invalid argument supplied for foreach() in /zstorage3/vhosts/fz.kiev.ua/httpdocs/kernel/content.php on line 86
Fiziologichnyi Zhurnal - <a id="lj1_ret_bk_to_jl0_href_id" href="?list0=12">Fiziol. Zh. 2010;</a> <a id="lj1_ret_bk_to_jl0_href_id" href="?list1=61">56(5):</a> 3-12
Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2010; 56(5): 3-12


Nitric oxide as the main mediatorof adaptation to physical training

T.V. Shimanskaya, Y.V.Goshovska, V.F. Sagach.

    O.O. Bogomoletz Institute of Physiology, National Academyof Science of Ukraine, Kyiv


Abstract

Intensive constitutive production of nitric oxide (NO) during physical training improves vasodilatation and heart function. However, it remains unclear how NO takes part in myocardial adaptation to workload, which is accompanied by an increased heart inflow and intracellular calcium content. Using isolated rat heart by Langendorf preparation, we studied myocardial response to gradually increased left ventricular volume (Frank-Starling low) and increasing concentration of Ca2+ in the perfu-sion solution (from 1.7mM to 12,5 mM) in trained and un­trained rats. It was shown that 4 weeks swimming course improved heart function: heart rate was decreased; contractile activity (dP/dt max) and coronary flow were increased by 20% and 33%, respectively. Equal volume stretching of bal­loon in left ventricle provoked greater contraction in trained comparing to untrained hearts, demonstrating extended func­tional reserves after swimming course. Mitochondrial membrane potential was significantly increased in hearts of trained rats. Furthermore, training prevented fast increase of the end dias-tolic pressure during calcium upload. Mitochondrial factor release due to opening of mitochondrial permeability transi­tion pore (MPTP) in trained hearts was detected at higherconcentrations of calcium that reveals extended calcium capacity of mitochondria and lesser sensitivity of MPTP to its induc­tor – calcium. Blockade of NO synthesis with L-NAME ap­plication of (10-4 M for 15 min) abolished reaction of trained heart during Frank-Starling and calcium upload. Thus, heart adaptation to physical training and extension of functional reserves in heart are provided by endogenous NO production.

Keywords: nitric oxide, Frank-Starling low, physical training,calcium upload, mitochondrial permeability transition,membrane potential

References

  1. Базілюк О.В., Коцюруба А.В., Степаненко Л.Г., Таланов CO., Коркач Ю.П., Сагач В.Ф. Вікові особливості змін системи оксиду азоту в судинах і плазмі за умов адаптації до фізичних навантажень // Фізіол.журн. - 2010. - 56. - №1. - С 3-12.
  2. Костерин С.А., Браткова Н.Ф., Курский М.Д. Роль сарколеммы и митохондрий в обеспечении кальцие-вого контроля расслабления миометрия // Биохимия. -1985. - 50, №8. -С. 1350-1361.
  3. Сагач В.Ф., Ткаченко М.Н., Дмитриева А.В. О роли эндотелия в реакции реактивной гиперемии коро­нарных сосудов //Докл. АН СССР. - 989. - 307, №3. -С. 765-767.
  4. Сагач В.Ф., Шиманська Т.В., Надточій СМ. Фактор, який вивільнюється під час реперфузії ішемізо-ваного серця, може бути маркером відкриття мітохондріальної пори // Фізіол. жрн. - 2003. - 49, №4. -С 6-12.
  5. Таланов С.А., Бурый В.А., Сагач В.Ф. Влияние адаптации к дозированным физическим нагрузкам на функцию миокарда крыс // Нейрофизиология. -2009. - 41, №1. -С. 41-47.
  6. Чорна СВ., Таланов С.А., Струтинська Н.А., Вавілова Г.Л., Коцюруба А.В., Гайдай М.І., Сагач В.Ф. Вплив тривалих фізичних навантажень на зміни функції серця щурів при ішемії-реперфузії, чутливість кальцій індукованої мітохондріальної пори та експресію роз’єднувального білка 3 // Фізіол.журн. - 2010. - 56, №1. - С.13-21.
  7. Шиманская ТВ, Добровольский Ф.В., Вавилова Г.Л. Н.А.Струтинская, Е.В.Рудык, Сагач В.Ф. NO-зависимая модуляция чувствительности открытия митохондриальной поры при ишемии–реперфузии изолированного сердца // Рос.физиол.журн. им. И.М. Сеченова. - 2009. - 95, №1. - С.28-37.
  8. Abete P., Calabrese C., Ferrara N., Cioppa A., Pisanelli P., Cacciatore F., Longobardi G., Napoli C, Rengo F. Exercise training restores ischemic preconditioning in the aging heart // J. Amer. Coll. Cardiol. - 2000. - 36. -P.643-650.
  9. 9. Balakirev M., Khramtsov V., Zimmer G. Modulation of the mitochondrial permeability transition by nitric oxide // Eur. J. Biochem. - 1997. - 246. - P. 710-718.
  10. 10. Bernstein R.D., Ochoa F.Y., Xu X.B., Forfia P., Shen W., Thompson C.I., Hintze T.H. Function and pro­duction of nitric oxide in the coronary circulation of the conscious dog during exercise. - Circulat. Res. -1996. - 79. - P. 840-848.
  11. Borutaite V., Mildaziene V., Brown G.C, Brand M.D. Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phospho­rylation system are affected by ischemia? // Biochim. Biophys. Acta. - 1995. - 1272. - P. 154-158.
  12. Bowles D.K ., Starnes J.W. Exercise training improves metabolic response after ischemia in isolated working rat heart // J. Appl. Physiol. - 1994. - 76, issue 4. -P.1608-1614.
  13. Brand M.D. in Brown G.C, Cooper CE. Editors, Bioenergetics: a practical approach. - Oxford.: IRL Press. - 1995. - P. 39-62.
  14. Brookes P., Salinas E., Darley-Usmar K., Eiserich J.P., Freeman B.A., Darley-Usmar V.M., Anderson P.G. Concentration-dependent effect of nitric oxide on mi­tochondrial permeability transition and cytochrom c release // J. Biol. Chem. - 2000. - 275. -P.20474-20479.
  15. Dedkova E.N., Blatter L.A. Characteristics and func­tion of cardiac mitochondrial nitric oxide synthase // J. Physiol. - 2009. - 587, №4. - P.851-872.
  16. Endo T., Imaizumi T., Tagawa T., Shiramoto M., Ando S., Takeshita A. Role of nitric oxide in exercise-induced vasodilation of the forearm // Circulat. - 1994. - 90. -P. 2886-2890.
  17. French J.P., Hamilton K.L., Quindry J.C., Lee Y., Upchurch P.A., Powers S.K. Exercise-induced protec­tion against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain // FASEB J. - 2008. - 22, №8. - P. 2862-2871.
  18. Hoydal M.A., Wisloff U., Kemi O.J., Britton S.L., Koch L.G., Smith G.L., Ellingsen O. Nitric oxide syntase type-1 modulates cardiomyocyte contractility and calcium handling: assotiation with low intrinsic aerobic capacity // Eur. J. Cardiovasc. Prev. Rehabil. - 2007. - 14. - P.319-325.
  19. 19. Hwang H., Reiser P.J., Billman G.E. Effects of exer­cise training on contractile function in myocardial trabe­cule after ischemia-reperfusion// J. Appl. Physiol. -2005. - 99,№1. - P.230-236.
  20. 20. Quindry J.C, Hamilton K.L., French J.P., Lee Y., Murlasits Z., Tumer N., Powers S.K. Exercise-induced HSP-72 elevation and cardioprotection against infarct and apoptosis// J. Appl. Physiol. - 2007. - 103. -P. 1056-1062.
  21. Kavazis A.N., McClung J.M., Hood D.A., Powers S.K. Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli // Amer. J. Physiol. - 2008. - 294. - P. H928-H935.
  22. Kemi O.J., Ellingsen O., Smith G.L., Wisloff U. Exer­cise-induced changes in calcium handling in left ven-tricular cardiomyocytes // Front Biosci. - 2008. - 13. -P.356-368. 23.Kingwell B.A. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease // FASEB J. - 2000. - 14. -P.1685-1696.
  23. Le Page C, Noirez P., Counrty J., Riou B., Swynghe-dauw B., Besse S. Exercise training improves func­tional post-ischemic recovery in senescent heart// Exp. Geront. - 2009. - 44. - P.177-182.
  24. Maiorana A., O’Driseoll, Tayler R, Green D. Exercise and the nitric oxide vasodilator system // Sports Med. -2003. - 33,№7. -P.1013-1035.
  25. Marcil M., Bourduas K., Ascah A., Burelle Y. Exercise training induces respiratory substrate-specific decrease in Ca2 -induced permeability transition pore opening in heart mitochondria // Amer. J. Physiol. - 2006. -290. - P. H1549-H1557.
  26. Nadtochiy S.M., Tompkins A., Brookes P.S. Different mechanisms of mitochondrial proton leak in ischaemia/ reperfusion injury and precondition: implications for pathology and cardioprotection // Biochem. J. - 2006. -395. – P. 611-618.
  27. Prendergast B.D., Sagach V.F., Shah A.M. Basal release of nitric oxide augments the Frank-Starling response in the isolated heart // Circulation. - 1997. - 96, №4. -P.1320-1329.
  28. 29. Rimbaud S., Garnier A., Ventura-Clapier R. Mitochon­drial biogenesis in cardiac pathology // Pharmacol. Res. -2009. - 61. - P.131-138.
  29. 30. Roberts C.K., Barnard R.J., Jasman A., Balon T.W. Acute exercise increases nitric oxide synthase activity in skeletal muscle // Amer. J. Physiol. - 1999. - 277. -P. E390-E394.
  30. Sagach V.F., Kindybalyuk A.M., Kovalenko T.N. Func­tional hyperemia of skeletal muscle: role of endothe­lium // J.Cardial. Pharmacol. - 1992. - 20, suppl. 12. -P.S170-S175.
  31. Shimanskaya T.V Goshovska Y, Sagach V. The role of mitochondrial permeability transition pore in modula­tion of oxygen cost of myocardial work by endogenous NO. - In: Advances in Biomedical Research. -Cambridge. - 2010. - P.313-317.
  32. Starnes J.W., Barnes B.D., Olsen M.E. Exercise train­ing decreases rat heart mitochondria free radical gen­eration but does not prevent Ca2+-induced dysfunction // J. Appl. Physiol. - 2007. - 102. - P. 1793-1798.
  33. Stolen T.O., Hoydal M.A., Kemi O.J., Catalucci D., Ceci M., Aasum E., Larsen T., Rolim N., Condorelli G., Smith G.L., Wislmff U. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of dia­betic cardiomyopathy // Circulat. Res. - 2009. - 105. -P.527-536.
  34. Strensberg A. Keller C, Hillig T., Frosig C, Wojtaszew-ski J.F., Pedersen B.K., Pilegaard H., Sander M. Nitric oxide production is a proximal signaling event control­ling exercise-induced mRNA expression in skeletal muscle// FASEB J. - 2007. - 21, №11. - P.2683-2694.
  35. Sun M., Zhang M., Gu J., Qian F.L., Gu J.Z., Chen H. Effects of different levels of exercise volume on endot-helium-dependent vasodilatation: roles of nitric oxide synthase and heme oxygenase // Hypertens Res. - 2008. -31, №5. -P. 805-816.
  36. Tatchum-Talom R,Schulz R., McNeill J.R., Khadour F.H. Upregulation of neuronal nitric oxide synthase in skeletal muscle by swim training // Amer. J. Physiol. -2000. - 279,№4. -P.H1757–H1766.
  37. Taylor R.P., Ciccolo J.T., Starnes J.W. Effect of exer­cise training on the ability of the rat heart to tolerate hydrogen peroxide // Cardiovasc. Res. - 2003. - 58, №3. -P.575-581.
  38. 39. Yamashita N., Hoshida S., Otsu K., Asahi M., Kuzuya T., Hori M. Exercise provides biphasic cardiopro­tection via manganese superoxide dismutase activation // J. Exp. Med. - 1999. - 189. - P. 1699-1706.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.