Expression of proteasome subunits PSMB5 and PSMB9 mRNA in hippocampal neurons in experimental diabetes mellitus: link with apoptosis and necrosis
Lebid' IuV, Dosenko VIe, Skybo HH
O.O. Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz56.04.066
Abstract
There is a huge body of evidence showing that long-termed diabetes mellitus is followed with hippocampal dysfunction. The goal of this work was to investigate the expression of proteasome subunits PSMB5 and PSMB9 mRNA in CA1, CA2 and CA3 areas of hippocampus in parallel with processes of cell death (apoptosis and necrosis) in development dynamics of streptozotocine-induced diabetes. We have studied hippocampal neurons using chromatine dye Hoechst-33342 and immunohistochemical detection of apoptotic cell death marker caspase-3. At day 3 and 7 after injection of streptozotocine we have performed visualization of caspase-3- immunopositive neurons showing signs of neurodegeneration in hippocampal sections using confocal microscope Olympus FV1000. The rate of proteasome subunits PSMB5 and PSMB9 mRNA expression was determined with RT-PCR. The results indicated elevation of PSMB9 mRNA content (from 4,807 ± 0,392 arbU up to 20,023 ± 4,949 arbU on day 3 and up to 20,253 ± 5,141 arbU on day 7). A maximal number of cells with signs of chromatin condensation was observed at day 3 and day 7 in CA2 and CA3 area (11,51% and 12,49% respectively). That indicates an intensification of proapoptotic processes. Summarizing the results presented above we can conclude that during the first week of diabetes mellitus development, hippocampal cells undergo the process of impairment and degeneration.
Keywords:
type 1 diabetes mellitus, hippocampus, neuronal injury, proteasome.
References
- Dosenko VE, Zagory V.Yu., Moibenko A.A. Changes in proteosomal activity and activity of neutral protein kinases in brain tissues during aging . Neurophysiology. 2005. 37, N 1. C.11-15.
CrossRef
- Poltorak V.V., Blokh K.O. Streptozotocin and viral insulin-dependent diabetes mellitus (autoimmune aspects) . Probl. endocrinology. 1989. 35, N 3. C.81-88.
- Aki M., Shimbara N., Takashina M., Akiyama K., Kagawa S., Tamura T., Tanahashi N., Yoshimura T., Tanaka K., Ichihara A. Interferon-gamma induces different subunit organizations and functional diversity of proteasomes . J. Biochem. 1994. 115, N 2. P.257-269.
CrossRef
PubMed
- Artola A. Diabetes-, stress- and ageing-related changes in synaptic plasticity in hippocampus and neocortex the same metaplastic process? . Eur. J. Pharmacol. 2008. 585, N 1. P.153-162.
CrossRef
PubMed
- Bailey J.L., Wang X., Price S.R. The balance between glucocorticoids and insulin regulates muscle proteolysis via the ubiquitin-proteasome pathway . Miner. Electrolyte Metab. 1999. 25, N 4-6. P.220-223.
CrossRef
PubMed
- Biessels G.J., van der Heide L.P., Kamal A., Bleys R.L., Gispen W.H. Ageing and diabetes: implications for brain function . Eur. J. Pharmacol. 2002. 441, N 1-2. P.1-14.
CrossRef
- Bonfoco E., Krainc D., Ankarcrona M. Nicotera P., Lipton S.A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide. su-peroxide in cortical cell cultures . Proc. Natl. Acad. Sci. USA. 1995. 92, N 16. P.7162-7166.
CrossRef
PubMed PubMedCentral
- Cao C, Leng Y, Liu X. Yi Y, Li P., Kufe D. Catalase is regulated by ubiquitination and proteasomal degradation. Role of the c-Abl and Arg tyrosine kinases . Biochemistry. 2003. 42. P.10348-10353.
CrossRef
PubMed
- Combaret L., Taillandier D., Dardevet D. Bechet D., Ralliere C, Claustre A., Grizard J. Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles . Biochem. J. 2004. 378, N 1. P.239-246.
CrossRef
PubMed PubMedCentral
- Conway A.M., James A.B., Zang J. Morris B.J. Regulation of neuronal cdc20 (p55cdc) expression by the plasticity-related transcription factor zif268 . Synapse. 2007. 61, N 6. P.463-468.
CrossRef
PubMed
- de Kloet E.R. Hormones and the stressed brain . Ann. N. Y Acad. Sci. 2004. 1018. P. 1-15.
CrossRef
PubMed
- Feldman E.L., Sullivan K.A., Kim B. Russel J.W. Insulin-like growth factors regulate neuronal differentiation and survival . Neurobiol. Dis. 1997. 4, N 3-4. P.201-214.
CrossRef
PubMed
- Ferrington D.A., Hussong S.A., Roehrich H. Kapphahn R.J., Kavanaugh S.M., Heuss N.D., Gregerson D.S. Immunoproteasome responds to injury in the retina and brain . J. Neurochem. 2008. 106, N 1. P.158-169.
CrossRef
PubMed PubMedCentral
- Finkbeiner S., Mitra S. The ubiquitin-proteasome pathway in Huntington's disease . Sci.World J. 2008. 8. P.421-433.
CrossRef
PubMed PubMedCentral
- Gao X., Hu H. Quality control of the proteins associated with neurodegenerative diseases . Acta Biochim. Biophys. Sin. (Shanghai). 2008. 40, N 7. P.612-618.
CrossRef
PubMed
- Goldberg A.L. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy . Biochem. Soc. Trans. 2007. 35, N 1. P.12-17.
CrossRef
PubMed
- Goldberg A.L. Protein degradation and protection against misfolded or damaged proteins . Nature. 2003. 426, N 6968. P. 895-899.
CrossRef
PubMed
- Hoffman E.K., Wilcox H.M., Scott R.W., Siman R. Proteasome inhibition enhances the stability of mouse Cu. Zn superoxide dismutase with mutations linked to familial amyotrophic lateral sclerosis . J. Neurol. Sci. 1996. 139. P.15-20.
CrossRef
- Huang J.Y, Hong YT. , Chuang J.I. Fibroblast growth factor 9 prevents MPP+-induced death of dopaminergic neurons and is involved in melatonin neuroprotection in vivo and in vitro . J. Neurochem. 2009. 109, N 5. P.1400-1412.
CrossRef
PubMed
- Hyun D.H., Lee M., Halliwell B., Jenner P. Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins . J. Neurochem. 2003. 86. P.363-373.
CrossRef
PubMed
- James A.B., Conway A.M., Morris B.J. Regulation of the neuronal proteasome by Zif268 (Egr1) . J. Neuro-sci. 2006. 26,N 5. P.1624-1634.
CrossRef
PubMed PubMedCentral
- Jarvis E.D., Scharff C, Grossman M.R., Ramos I.A., Nottebohm F. For whom the bird sings: context-dependent gene expression . Neuron. 1998. 21, N 4. P.775-788.
CrossRef
- Jesenberger , Jentsch S. Deadly encounter: ubiquitin meets apoptosis . Nat. Re Mol. Cell Biol. 2002. 3, N 2. P. 112-121.
CrossRef
PubMed
- Kaczmarek L., Zangenehpour S., Chaudhuri A. Sensory regulation of immediate-early genes c-fos and zif268 in monkey visual cortex at birth and throughout the critical period . Cereb. Cortex. 1999. 9, N 2. P.179-187.
CrossRef
PubMed
- Lebed Y, Orlovsky M.A., Skibo G.G. Metyrapone prevents neuronal degeneration during first two weeks of the development of streptozotocine-induced diabetes mellitus. FENS Abstr. 2008. 4. P. 119-125.
- Lecker S.H., Goldberg A.L., Mitch W.E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states . J. Amer. Soc. Nephrol. 2006. 17,N 7. P.1807-1819.
CrossRef
PubMed
- Li X., Li H., Li X.J. Intracellular degradation of misfolded proteins in polyglutamine neurodegenerative diseases . Brain Res. Re 2008. 59, N 1. P.245-252.28. Li Z.G., Zhang W., Grunberger G. Sima A.A. Hippoc-ampal neuronal apoptosis in type 1 diabetes . Brain Res. 2002. 946, N 2. P.221-231.
CrossRef
PubMed PubMedCentral
- Liu C.H., Goldberg A.L., Qiu X.B. New insights into the role of the ubiquitin-proteasome pathway in the regulation of apoptosis . Chang Gung. Med. J. 2007. 30, N 6. P.469-479.
- Mariappan N., Elks C.M., Sriramula S. Guggilam A., Borkhsenions., Francis J. NF-{kappa}B-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes . Cardiovasc. Res. 2009. 85,N 3. P.473-483.
CrossRef
PubMed PubMedCentral
- Mello C. , Velho T.A., Pinaud R. Song-induced gene expression: a window on song auditory processing and perception . Ann. N. Y. Acad. Sci. 2004. 1016. P.263-281.
CrossRef
PubMed
- Mishto M., Bellavista E., Santoro A., Stolzing A., Ligorio C, Nacmias B., Spazzafumo L., Chiappelli M., Licastro F., Sorbi S., Pession A., Ohm T., Grune T., Franceschi C. Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains . Neurobiol. Aging. 2006. 27, N 1. P.54-66.
CrossRef
PubMed
- Mitch W.E., Bailey J.L., Wang X., Jurkovitz C, Newby D., Price S.R. Evaluation of signals activating ubiquitin-proteasome proteolysis in a model of muscle wasting . Amer. J. Physiol. 1999. 276, N 5 Pt 1. P.C1132-C1138.
CrossRef
PubMed
- Nass N., Bartling B., Navarrete S.A. Scheubel R.J., Bqrgermann J., Silber R.E., Simm A. Advanced glycation end products, diabetes and ageing . Z. Gerontol. Geriatr. 2007. 40, N 5. P.349-356.
CrossRef
PubMed
- Neumann H., Cavalie A., Jenne D.E. Wekerle H. Induction of MHC class I genes in neurons . Science. 1995. 269, N 5223. P.549-552.
CrossRef
PubMed
- Perez Matute P., Zulet M.A., Martinez J.A. Reactive species and diabetes: counteracting oxidative stress to improve health . Curr. Opin. Pharmacol. 2009. 9, N 6. P.771-779.
CrossRef
PubMed
- Piccinini M., Mostert M., Croce S. Baldovino S., Papotti M., Rinaudo M.T.. Interferon-gamma-inducible subunits are incorporated in human brain 20S proteasome . J. Neuroimmunol. 2003. 135, N 1-2. P.135-140.
CrossRef
- Prikryl R. Cognitive functions impairment in diabetes mellitus patients . Cas. Lek. Cesk. 2007. N 146. P. 434-437.
- Sivitz W.I., Yorek M.A. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities . Antioxid. Redox. Signal. 2009. 12, N 4. P.537-577.
CrossRef
PubMed PubMedCentral
- Wessels A. M., Rombouts S. A., Remijnse P. L. Boom Y, Scheltens P., Barkhof F., Heine R.J., Snoek F.J. Cognitive performance in type 1 diabetes patients is associated with cerebral white matter volume . Diabetologia. 2007. N 50. P. 1763-1769.
CrossRef
PubMed
- Wolf B.B., Schuler M., Echeverri F., Green D.R. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45. inhibi-tor of caspase-activated DNase inactivation . J. Biol. Chem. 1999. 274, N 43. P.30651-30656.
CrossRef
PubMed
|