Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2010; 56(4): 66-75


Expression of proteasome subunits PSMB5 and PSMB9 mRNA in hippocampal neurons in experimental diabetes mellitus: link with apoptosis and necrosis

Lebid' IuV, Dosenko VIe, Skybo HH

    O.O. Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz56.04.066

Abstract

There is a huge body of evidence showing that long-termed diabetes mellitus is followed with hippocampal dysfunction. The goal of this work was to investigate the expression of proteasome subunits PSMB5 and PSMB9 mRNA in CA1, CA2 and CA3 areas of hippocampus in parallel with pro­cesses of cell death (apoptosis and necrosis) in development dynamics of streptozotocine-induced diabetes. We have stud­ied hippocampal neurons using chromatine dye Hoechst-33342 and immunohistochemical detection of apoptotic cell death marker caspase-3. At day 3 and 7 after injection of streptozotocine we have performed visualization of caspase-3- immunopositive neurons showing signs of neurodegeneration in hippocampal sections using confocal microscope Olympus FV1000. The rate of proteasome subunits PSMB5 and PSMB9 mRNA expression was determined with RT-PCR. The results indicated elevation of PSMB9 mRNA content (from 4,807 ± 0,392 arbU up to 20,023 ± 4,949 arbU on day 3 and up to 20,253 ± 5,141 arbU on day 7). A maximal number of cells with signs of chromatin condensation was observed at day 3 and day 7 in CA2 and CA3 area (11,51% and 12,49% respectively). That indicates an intensification of proapoptotic processes. Summarizing the results presented above we can conclude that during the first week of diabetes mellitus devel­opment, hippocampal cells undergo the process of impairment and degeneration.

Keywords: type 1 diabetes mellitus, hippocampus, neuronal injury, proteasome.

References

  1. Dosenko VE, Zagory V.Yu., Moibenko A.A. Changes in proteosomal activity and activity of neutral protein kinases in brain tissues during aging . Neurophysiology. 2005. 37, N 1. C.11-15. CrossRef  
  2. Poltorak V.V., Blokh K.O. Streptozotocin and viral insulin-dependent diabetes mellitus (autoimmune aspects) . Probl. endocrinology. 1989. 35, N 3. C.81-88.
  3.  
  4. Aki M., Shimbara N., Takashina M., Akiyama K., Kagawa S., Tamura T., Tanahashi N., Yoshimura T., Tanaka K., Ichihara A. Interferon-gamma induces dif­ferent subunit organizations and functional diversity of proteasomes . J. Biochem. 1994. 115, N 2. P.257-269. CrossRef PubMed
  5.  
  6. Artola A. Diabetes-, stress- and ageing-related changes in synaptic plasticity in hippocampus and neocortex the same metaplastic process? . Eur. J. Pharmacol. 2008. 585, N 1. P.153-162. CrossRef PubMed
  7.  
  8. Bailey J.L., Wang X., Price S.R. The balance between glucocorticoids and insulin regulates muscle proteoly­sis via the ubiquitin-proteasome pathway . Miner. Electrolyte Metab. 1999. 25, N 4-6. P.220-223. CrossRef PubMed
  9.  
  10. Biessels G.J., van der Heide L.P., Kamal A., Bleys R.L., Gispen W.H. Ageing and diabetes: implications for brain function . Eur. J. Pharmacol. 2002. 441, N 1-2. P.1-14. CrossRef  
  11. Bonfoco E., Krainc D., Ankarcrona M. Nicotera P., Lipton S.A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide. su-peroxide in cortical cell cultures . Proc. Natl. Acad. Sci. USA. 1995. 92, N 16. P.7162-7166. CrossRef PubMed PubMedCentral
  12.  
  13. Cao C, Leng Y, Liu X. Yi Y, Li P., Kufe D. Catalase is regulated by ubiquitination and proteasomal degrada­tion. Role of the c-Abl and Arg tyrosine kinases . Biochemistry. 2003. 42. P.10348-10353. CrossRef PubMed
  14.  
  15. Combaret L., Taillandier D., Dardevet D. Bechet D., Ralliere C, Claustre A., Grizard J. Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles . Biochem. J. 2004. 378, N 1. P.239-246. CrossRef PubMed PubMedCentral
  16.  
  17. Conway A.M., James A.B., Zang J. Morris B.J. Regulation of neuronal cdc20 (p55cdc) expression by the plasticity-related transcription factor zif268 . Synapse. 2007. 61, N 6. P.463-468. CrossRef PubMed
  18.  
  19. de Kloet E.R. Hormones and the stressed brain . Ann. N. Y Acad. Sci. 2004. 1018. P. 1-15. CrossRef PubMed
  20.  
  21. Feldman E.L., Sullivan K.A., Kim B. Russel J.W. Insulin-like growth factors regulate neuronal differen­tiation and survival . Neurobiol. Dis. 1997. 4, N 3-4. P.201-214. CrossRef PubMed
  22.  
  23. Ferrington D.A., Hussong S.A., Roehrich H. Kapphahn R.J., Kavanaugh S.M., Heuss N.D., Gregerson D.S. Immunoproteasome responds to injury in the retina and brain . J. Neurochem. 2008. 106, N 1. P.158-169. CrossRef PubMed PubMedCentral
  24.  
  25. Finkbeiner S., Mitra S. The ubiquitin-proteasome path­way in Huntington's disease . Sci.World J. 2008. 8. P.421-433. CrossRef PubMed PubMedCentral
  26.  
  27. Gao X., Hu H. Quality control of the proteins associ­ated with neurodegenerative diseases . Acta Biochim. Biophys. Sin. (Shanghai). 2008. 40, N 7. P.612-618. CrossRef PubMed
  28.  
  29. Goldberg A.L. Functions of the proteasome: from pro­tein degradation and immune surveillance to cancer therapy . Biochem. Soc. Trans. 2007. 35, N 1. P.12-17. CrossRef PubMed
  30.  
  31. Goldberg A.L. Protein degradation and protection against misfolded or damaged proteins . Nature. 2003. 426, N 6968. P. 895-899. CrossRef PubMed
  32.  
  33. Hoffman E.K., Wilcox H.M., Scott R.W., Siman R. Proteasome inhibition enhances the stability of mouse Cu. Zn superoxide dismutase with mutations linked to familial amyotrophic lateral sclerosis . J. Neurol. Sci. 1996. 139. P.15-20. CrossRef  
  34. Huang J.Y, Hong YT. , Chuang J.I. Fibroblast growth factor 9 prevents MPP+-induced death of dopaminergic neurons and is involved in melatonin neuroprotection in vivo and in vitro . J. Neurochem. 2009. 109, N 5. P.1400-1412. CrossRef PubMed
  35.  
  36. Hyun D.H., Lee M., Halliwell B., Jenner P. Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins . J. Neurochem. 2003. 86. P.363-373. CrossRef PubMed
  37.  
  38. James A.B., Conway A.M., Morris B.J. Regulation of the neuronal proteasome by Zif268 (Egr1) . J. Neuro-sci. 2006. 26,N 5. P.1624-1634. CrossRef PubMed PubMedCentral
  39.  
  40. Jarvis E.D., Scharff C, Grossman M.R., Ramos I.A., Nottebohm F. For whom the bird sings: context-depen­dent gene expression . Neuron. 1998. 21, N 4. P.775-788. CrossRef  
  41. Jesenberger , Jentsch S. Deadly encounter: ubiquitin meets apoptosis . Nat. Re Mol. Cell Biol. 2002. 3, N 2. P. 112-121. CrossRef PubMed
  42.  
  43. Kaczmarek L., Zangenehpour S., Chaudhuri A. Sen­sory regulation of immediate-early genes c-fos and zif268 in monkey visual cortex at birth and throughout the critical period . Cereb. Cortex. 1999. 9, N 2. P.179-187. CrossRef PubMed
  44.  
  45. Lebed Y, Orlovsky M.A., Skibo G.G. Metyrapone prevents neuronal degeneration during first two weeks of the development of streptozotocine-induced diabe­tes mellitus. FENS Abstr. 2008. 4. P. 119-125.
  46.  
  47. Lecker S.H., Goldberg A.L., Mitch W.E. Protein degra­dation by the ubiquitin-proteasome pathway in normal and disease states . J. Amer. Soc. Nephrol. 2006. 17,N 7. P.1807-1819. CrossRef PubMed
  48.  
  49. Li X., Li H., Li X.J. Intracellular degradation of misfolded proteins in polyglutamine neurodegenerative diseases . Brain Res. Re 2008. 59, N 1. P.245-252.28. Li Z.G., Zhang W., Grunberger G. Sima A.A. Hippoc-ampal neuronal apoptosis in type 1 diabetes . Brain Res. 2002. 946, N 2. P.221-231. CrossRef PubMed PubMedCentral
  50.  
  51. Liu C.H., Goldberg A.L., Qiu X.B. New insights into the role of the ubiquitin-proteasome pathway in the regulation of apoptosis . Chang Gung. Med. J. 2007. 30, N 6. P.469-479.
  52.  
  53. Mariappan N., Elks C.M., Sriramula S. Guggilam A., Borkhsenions., Francis J. NF-{kappa}B-induced oxi­dative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes . Cardiovasc. Res. 2009. 85,N 3. P.473-483. CrossRef PubMed PubMedCentral
  54.  
  55. Mello C. , Velho T.A., Pinaud R. Song-induced gene expression: a window on song auditory processing and perception . Ann. N. Y. Acad. Sci. 2004. 1016. P.263-281. CrossRef PubMed
  56.  
  57. Mishto M., Bellavista E., Santoro A., Stolzing A., Ligorio C, Nacmias B., Spazzafumo L., Chiappelli M., Licastro F., Sorbi S., Pession A., Ohm T., Grune T., Franceschi C. Immunoproteasome and LMP2 poly­morphism in aged and Alzheimer's disease brains . Neurobiol. Aging. 2006. 27, N 1. P.54-66. CrossRef PubMed
  58.  
  59. Mitch W.E., Bailey J.L., Wang X., Jurkovitz C, Newby D., Price S.R. Evaluation of signals activating ubiquitin-proteasome proteolysis in a model of muscle wasting . Amer. J. Physiol. 1999. 276, N 5 Pt 1. P.C1132-C1138. CrossRef PubMed
  60.  
  61. Nass N., Bartling B., Navarrete S.A. Scheubel R.J., Bqrgermann J., Silber R.E., Simm A. Advanced glycation end products, diabetes and ageing . Z. Gerontol. Geriatr. 2007. 40, N 5. P.349-356. CrossRef PubMed
  62.  
  63. Neumann H., Cavalie A., Jenne D.E. Wekerle H. In­duction of MHC class I genes in neurons . Science. 1995. 269, N 5223. P.549-552. CrossRef PubMed
  64.  
  65. Perez Matute P., Zulet M.A., Martinez J.A. Reactive species and diabetes: counteracting oxidative stress to improve health . Curr. Opin. Pharmacol. 2009. 9, N 6. P.771-779. CrossRef PubMed
  66.  
  67. Piccinini M., Mostert M., Croce S. Baldovino S., Papotti M., Rinaudo M.T.. Interferon-gamma-inducible subunits are incorporated in human brain 20S proteasome . J. Neuroimmunol. 2003. 135, N 1-2. P.135-140. CrossRef  
  68. Prikryl R. Cognitive functions impairment in diabetes mellitus patients . Cas. Lek. Cesk. 2007. N 146. P. 434-437.
  69.  
  70. Sivitz W.I., Yorek M.A. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional sig­nificance and therapeutic opportunities . Antioxid. Redox. Signal. 2009. 12, N 4. P.537-577. CrossRef PubMed PubMedCentral
  71.  
  72. Wessels A. M., Rombouts S. A., Remijnse P. L. Boom Y, Scheltens P., Barkhof F., Heine R.J., Snoek F.J. Cognitive performance in type 1 diabetes patients is associated with cerebral white matter volume . Diabetologia. 2007. N 50. P. 1763-1769. CrossRef PubMed
  73.  
  74. Wolf B.B., Schuler M., Echeverri F., Green D.R. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45. inhibi-tor of caspase-activated DNase inactivation . J. Biol. Chem. 1999. 274, N 43. P.30651-30656. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.