Changes of vascular reactivity and reactive oxygen species in conditions of varying duration of permanent stay in the alienation zone in mice
Tkachenko MM, Kotsiuruba AV, Baziliuk OV, Horot' IV, Sahach VF
- O.O. Bogomoletz National Medical University, Kyiv, Ukraine
- O.O.Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- A.V. Palladin Institute of Biochemistry NAS Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz56.04.047
Abstract
Peculiarities of changes in the vascular reactivity and in the content of reactive forms of oxygen and stable metabolites of nitric oxide (NO) were studied in the aorta preparations of C57BL/6 and BALB/c mice of the two age groups (6 and 18 mo.), which were born and permanently kept in the Chernobyl alienation zone. The results obtained showed a disturbance of acetylcholine-induced endothelium-dependent reactions of relaxation of smooth muscles of the thoracic aorta. A lower level of NO synthesis and lower level of oxidative arginase metabolism of arginine corresponded to a higher degree of damage of endothelium-dependent reactions of relaxation of the thoracic aorta smooth muscles. A decrease of NO synthesis in conditions of permanent effects of low doses of radiation was conditioned by an increase of generation of reactive forms of oxygen, namely, superoxide and hydroxyl radicals, which might be formed in mitochondria. In conditions of permanent effects of low doses of radiation a lesser level of protein nitrosothilation, same as lesser one of generation of OH-radi-cal, corresponded to a higher level of damage of endothelium-dependent reactions.
Keywords:
aorta, Chernobyl alienation zone, endothelium, nitric oxide, low doses of radiation, reactive forms of oxygen, reactive forms of nitric, uric acid, vascular reactivity
References
- Blandova Z.K., Dushkin V.A., Malashenko A.M., Shmidt E.F. Linii laboratornih zhivotnih dlya mediko-biologicheskih issledovanii. M.: Nauka, 1983. 189 s.
- Vorob'yov E.I., Stepanov R.P. Ioniziruyushchie izlucheniya i krovenosnie sosudi. M.: Energo-atomizdat, 1985. 296 s.
- Gavrilov V.B., Gavrilova A.R., Hmara N.F. Izmerenie dienovih kon'yugatov v plazme krovi po UF-pogloshcheniyu geptanovih i izopropanol'nih ekstraktov . Lab. delo. 1988. N 2. S. 60-64.
- Moibenko OO, Sagach VF, Tkachenko MM, Korkushko OV, Bezrukov VV, Kulchitsky OK, Stefanov OV, Solovyov AI, Mala LT, Frolkis V .IN. Fundamental mechanisms of action of nitric oxide on the cardiovascular system as a basis of pathogenetic treatment of its diseases . Fiziol zh. . 2004. 50, N 1. p. 11-30.
- Tkachenko MM, Sagach VF, Basiliuk OV, Kotsyuruba AV, Popereka GM, Stepanenko LG, Seniuk OF Age peculiarities of changes in contractile vascular reactions and content of free oxygen radicals and nitric oxide meta bolites in BALB . c mice under conditions of exclusion . Fiziol zh. . 2005. 51, N 3. p. 32-41.
- Tkachenko M.N., Kotsyuruba A.V., Bazilyuk O.V., Talanov S.A., Popereka G.M., Senyuk O.F., Sagach V.F. Sosudistaya reaktivnost' i metabolizm reaktivnih form kisloroda i azota pri deistvii nizkih doz radiatsii . Rad. biologiya. Radioekologiya. 2009. 49, N 4. S. 462-472.
- Frol'kis V.V., Bezrukov V.V., Kul'chitskii O.K. Starenie i eksperimental'naya patologiya serdechnososudistoi sistemi. K.: Nauk. dumka, 1994. 248 s.
- Basaga H.S. Biochemical aspects of free radicals . Cell. Biol. 1990. 68, N 5. P. 989-998.
CrossRef
PubMed
- Beckman J.S., Beckman T.W., Chen J., Marshall P.A., Freeman B.A. Apparent hydroxyl radical production by peroxinitrite: implications for endothelial injury from nitric oxide and superoxide . Proc. Natl. Acad. Sci. USA. 1990. 87, N 7. P. 1620-1624. 10. Durante W., Johnson F.K., Johnson A.J. Arginase: a critical regulator of nitric oxide synthesis and vascular function . Clin. Exp. Pharmacol. Physiol. 2007. 34, N 9. P. 906-911. 11.Gajdusek C.M., Onoda K., London S., Johnson M., Morrison R., Mayberg M.R. Early molecular changes in irradiated aortic endothelium . J. Cell Physiol. 2001. 188, N 1. P. 8-23.
- Honston M., Chumley P., Radi R., Rubbo H., Freeman B.A. Xanthine oxidase reaction with nitric oxide and peroxynitrite . Arch. Biochem. Biophys. 1998. 355, N 1. P. 1-8.
CrossRef
PubMed
- Ignarro L.J., Cirino G., Casini A., Napoli C. Nitric oxide as a signaling molecule in the vascular system: an overview . J. Cardiovasc. Pharmacol. 1999. 34, N 6. P. 879-886.
CrossRef
PubMed
- Kano Y., Tanabe T., Nagasawa J., Mizuta T. Effect of age on rat responses to acetylcholine and nitric oxide onor (NOC-18) . Res. Commun. Mol. Pathol. Pharmacol. 2000. 107, N 3-4. P. 331-334.
- Kantak S.S., Diglio C.A., Onoda J.M. Low dose radiation-induced endothelial cell retraction . Int. J. Radiat. Biol. 1993. 64, N 3. P. 319-328.
CrossRef
PubMed
- Korge P., Ping P., Weiss J.N. Reactive oxygen species production in energized cardiac mitochondria during hypoxia. reoxygenation: Modulation by nitric oxide . Circ. Res. 2008. 103. P. 873-880.
CrossRef
PubMed PubMedCentral
- Marin J., Rodrigues-Martinez M.A. Age-related changes in vascular responses . Exp. Gerontol. 1999. 34. . 503-512.
CrossRef
- Mori M. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling . J. Nutr. 2007. 137, June P.1616S-1620S.
CrossRef
PubMed
- Singh R.J., Hogg N., Goss S.P., Antholine W.E., Kalya-naraman B. Mechanism of superoxide dismutase. H O2 mediated nitric oxude release from S-nitrosoglutathione . Arch. Biochem. Biophys. 1999. 372, N 1. P. 8-15.
CrossRef
PubMed
- Tarpey M.M., Fridovich I. Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite . Circ. Res. 2001. 89. P. 224-236.
CrossRef
PubMed
|