Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2010; 56(4): 37-46


Effects of ubiquitin gene silencing in anoxia-reoxygenation of cultured cardiomyocytes

Kyrychenko VO, Nahibin VS, Tumanovs'ka LV, Dosenko VIe, Rybal'chenko VK, Moĭbenko OO

  1. O.O.Bogomoletz Institute of Physiology, National Academyof Sciences of Ukraine, Kyiv, Ukraine
  2. Taras Shevchenko Kyiv National University, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz56.04.037

Abstract

Ubiquitin-dependent proteasomal proteolysis is crucial in the turnover of cardiomyocytes functional proteins (actin, myosin, ion channels at al), therefore, investigation of cell death after ubiquitin (UBB) gene silencing using RNA interference and anoxia-reoxygenation (AR) modeling appears to be attractive. Cardiomyocytes were transfected by siRNA to ubiquitin gene using electroporation procedure, and then primary culture was treated by 30 min of anoxia and 60 min of reoxygenation. The number of living, necrotic and apoptotic cardiomyocytes was determined by fluorescence microscopy. The level of UBB and proteasome subunits (beta 5 (PSMB5) and (beta 9 (PSMB9) mRNA expression was estimated by real-time PCR. It was shown that UBB mRNA expression was increased by 2.1 times after AR modelling (P<0.05). Small interference RNA injection in cell culture decreased ubiquitin, PSMB5 and PSMB9 expression by 2.4 (P<0.05), 1.3 (P>0.05) and 1.6 (P<0.05) times, respectively, compared with control (scrambled siRNA introduction). At the same time, the number of living cardiomyocytes decreased to 70.26 ± 1.54%, P<0.05, and the level of necrotic cells, apoptotic cells and cells with signs of autophagy augmented by 25.92 ± 1.52%, (P=0.38), 4.32 ± 0.53% (P=0,15) and 38.2 ± 3.81% (P=0,001), respectively. Ubiquitin silencing after AR (30 min/1 h) in­creased the number of living cells by 3.7% and decreased the number of necrotic cells by 4.7% and did not alter the apoptotic and autophagic cells populations. The data obtained indicate that ubiquitin gene silencing, mRNA expression of which aug­mented during AR, induces necrotic and autophagic death of intact neonatal cardiomyocytes in culture, but enhances the AR resistance of these cells to some extent.

Keywords: ubiquitin, RNA-interference, cardiomyocytes

References

  1. Pashevin DO, Dosenko VE, Byts YV, Moybenko OO Changes in proteasome activity in the tissues of the aorta, heart and blood leukocytes in the course of modeling cholesterol atherosclerosis . Fiziol zh.  -2007. 53, N 6. P.3-10.
  2.  
  3. Bulteau A.L., Lundberg K.C., Humphries K.M. Sadek H.A., Szweda P.A., Friguet B., Szweda L.I. Oxidative modification and inactivation of the proteasome dur­ing coronary occlusion. reperfusion . J. Biol. Chem. 2001. 276. P.30057-30063. CrossRef PubMed
  4.  
  5. Cao C, Leng Y., Liu X., Yi Y, Li P., Kufe D. Catalase is regulated by ubiquitination and proteosomal degra­dation. Role of the c-Abl and Arg tyrosine kinases . Biochemistry. 2003. 42, N 35. P.10348-10353. CrossRef PubMed
  6.  
  7. Chen S.M., Li Y.G., Wang D.M. Zhang G.H., Tan C.J. Expression of heme oxygenase-1, hypoxia inducible factor-1alpha, and ubiquitin in peripheral inflammatory cells from patients with coronary heart disease . Clin. Chem. Lab. Med. 2009. 47, N 3. P.327-333. CrossRef PubMed
  8.  
  9. Ding W.X., Ni H.M., Gao W. Yoshimori T., Stolz D.B., Ron D., Yin X.M. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability . Amer. J. Pathol. 2007. 171, N 2. P.513-524. CrossRef PubMed PubMedCentral
  10.  
  11. Dosenko V.E., Nagibin V.S., Tumanovskaya L.V., Zagoriy V.Y, Moibenko A.A., Vaage J. Proteasomal proteolysis in anoxia-reoxygenation, preconditioning and postconditioning of isolated cardiomyocytes . Pathophysiology. 2006. 2. P.1 19-125. CrossRef PubMed
  12.  
  13. Gross E.R., Gross G.J. Ligand triggers of classical pre­conditioning and postconditioning . Cardiovasc. Res. 2006. 70,N 2 P.212-221. CrossRef PubMed
  14.  
  15. Hoffman E.K., Wilcox H.M., Scott R.W., Siman R. Proteasome inhibition enhances the stability of mouse Cu. Zn superoxide dismutase with mutations linked to familial amyotrophic lateral sclerosis . J. Neurol. Sci. 1996. 139, N 1. P.15-20. CrossRef  
  16. Ikeda F., Dikic I. Atypical ubiquitin chains: new mo­lecular signals . EMBO reports. 2008. 9, N 6. P.536-542. CrossRef PubMed PubMedCentral
  17.  
  18. Kim K.I., Baek S.H. Small ubiquitin-like modifiers in cellular malignancy and metastasis . Int. Rev. Cell. Mol. Biol. 2009. 273. P.265-311. CrossRef  
  19. Kirkin V., Lamark T., Johansen T., Dikic I. NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets . Autophagy. 2009 5, N 5. P.732-733. CrossRef PubMed
  20.  
  21. Kirkin V., McEwan D.G., Novak I., Dikic I. A role for ubiquitin in selective autophagy . Mol Cell. 2009. 34,N 3. P.259-69. CrossRef PubMed
  22.  
  23. Kostin S., Pool L., Elsflsser A., Hein S., Drexler H.C., Arnon E., Hayakawa Y, Zimmermann R., Bauer E., Khrvekorn W.P., Schaper J. Myocytes die by multiple mechanisms in failing human hearts . Circulat. Res. 2003. 92,N 7. P.715-724. CrossRef PubMed
  24.  
  25. Kumar S., Yoshida Y, Noda M. Cloning of a cDNA which encodes a novel ubiquitin-like protein . Biochem. and Biophys. Res. Commun. 1993. 195, N 1. P.393-399.15. Lamark T., Kirkin V., Dikic I., Johansen T. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets . Cell Cycle. 2009. 8, N 13. P.1986-1990. CrossRef PubMed
  26.  
  27. Luss H., Schmitz W., Neumann J. A proteasome in­hibitor confers cardioprotection . Cardiovasc. Res. 2002. 54. P.140-151. CrossRef  
  28. Mearini G., Schlossarek S., Willis M.S., Carrier L. The ubiquitin-proteasome system in cardiac dysfunction . . Biochim. et Biophys Acta. 2008. 1782, N 12. P.749-763. CrossRef PubMed
  29.  
  30. Piper R.C., Luzio J.P. Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes . Curr. Opin. Cell Biol. 2007. 19. P.459-465. CrossRef PubMed PubMedCentral
  31.  
  32. Reinecke H., Zhang M., Bartosek T. Murry C.E. Survival, integration, and differentiation of cardiomyocyte grafts . Circulation. 1999. 100. P.193-202. CrossRef PubMed
  33.  
  34. Staub O., Rotin D. Role of Ubiquitylation in Cellular Membrane Transport . Physiol. Rev. 2006. 86. P.669-707. CrossRef PubMed
  35.  
  36. Surovaya O.V., Dosenko V.E., Nagibin V.S., Tuma-novskaya L.V., Moibenko A.A. Effects of late postconditioning on gene expression and cell death in neonatal rat cardiomyocyte cultures . Pathophysiol­ogy. 2009. 16, N 1. P.47-52. CrossRef PubMed
  37.  
  38. Wang J. SUMO conjugation and cardiovascular devel­opment . Front Biosci. 2009. 14. P.1219-1229. CrossRef PubMed
  39.  
  40. Zhu K., Dunner K.Jr., McConkey D.J. Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells . Oncogene. 2009. 29, N 3. P.451-462. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.