Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2010; 56(4): 19-25

Increased expression of voltage-dependent anion channel and adenine nucleotide translocase and the sensitivity of calcium-induced mitochondrial permeability transition opening pore in the old rat

Chorna SV, Dosenko VIe, Strutyns'ka NA, Vavilova HL, Sahach VF

    O.O. Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, Kyiv, Ukraine


We investigated mRNA and protein expression of voltage-dependent anion channel (VDAC), mRNA adenine nucleotide translocase (ANT) as well as the sensitivity of the mitochondrial permeability transition pore opening (MPTP) to Ca2+ in the adult and old rat heart. It was shown that in the old rats hearts VDAC mRNA expression increased by 1,7 (p<0,05) times and mRNA ANT expression increased by 1,8 (p<0,05) times in comparison with adult animals. The Western Blot analysis showed that the level of VDAC protein expression in the old rat hearts also significantly increased compared with adult animals. In the hearts of old rats, the sensitivity of MPTP opening to calcium (10-7 - 10-4 mol/l) determined by mitochon­dria swelling, increased two-fold (p<0,05). Therefore, an in­creased VDAC and ANT expression, as the main structural functional components of the MPTP, and an increased sensi­tivity of MPTP opening to Ca2+ caused an increase in the permeability of mitochondrial membranes in aging. Each of these factors may contribute to alterations in mitochondrial barrier properties and lead to mitochondrial dysfunction.

Keywords: voltage-dependent anion channel expression, adenine nucleotide translocase, expression mRNA, mitochondrial permeability transition pore, heart, aging.


  1. Sagach VF, Vavilova GL, Strutinskaya NA, Rudik OV Aging increases sensitivity to inducers of mitochondrial pore in the heart of rats . Fiziol zh.  - 2004. 50, N 2. P. 49-63.
  3. Sagach VF, Rudik OV, Vavilova GL, Kotsyuruba AV, Tkachenko Yu.P. Melatonin restores ischemic tolerance and decreases the sensitivity of opening of the mitochondrial pore in the rat heart . Fiziol zh. 2006. 52, N 3. P. 3-15.
  5. Brdiczka D., Kaldis P., Wallimann T. In vitro complex formation between the octamer of mitochondrial creatine kinase and porin . J. Biol. Chem. 1994. 269, N 44. P. 27640-27644.
  7. Brown G.C. Control of respiration and ATP synthesisin mammalian mitochondria and cells . J. Biochem. 1992. 284, Pt 1. P.1-13. CrossRef PubMed PubMedCentral
  9. Centurione L., Antonucci A., Miscia S., Grilli A., Rapino M., Grifone G., Di Giacomo V., Di Giulio C, Falconi M., Cataldi A. Age-related death-survival bal­ance in myocardium: an immunohistochemical and bio­chemical study . Mech. Ageing Dev. 2002. 23, N 4. P.341-350. CrossRef  
  10. Colombini M. VDAC: the channel at the interface be­tween mitochondria and the cytosol . Mol. Cell. Biochem. 2004. 256-257. P.107-115. CrossRef PubMed
  12. Crompton M., Barksky E., Johnson N., Capano M. Mitochondrial intermembrane junctional complexes and their role in cell death . J. Biochem. 2002. 84. P.143-152. CrossRef  
  13. Crompton M. The mitochondrial permeability tran­sition pore and its role in cell death .J. Biochem. 1999. 341. P. 233-249. CrossRef PubMed PubMedCentral
  15. Doerner A., Pauschinger A., Bador A. Noutsias M., Giessen S., Schulze K., Bilger J., Rauch U., Schultheiss H.P. Tissue-specific transcription pattern of the ad­enine nucleotide translocase isoforms in humans . FEBS Lett. 2004. 414, N 2. P. 258-262. CrossRef  
  16. Gincel D., Zaid H., Shoshan-Barmatz V. Calcium bind­ing and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochon­drial function . J. Biochem. 2001. 358, Pt 1. P. 147-155. CrossRef PubMed PubMedCentral
  18. Grado A., Manchado C, Iglesias R., Giralt M., Villarroya F., Mampel T., Vinas O. Muscle. heart isoform of mito­chondrial adenine nucleotide translocase (ANT1) is tran­siently expressed during perinatal development in rat liver . FEBS Lett. 1998. 421. P. 213-216. CrossRef  
  19. Guimaraes C.A., Linden R. Programmed cell death: apoptosis and alternative death styles . Eur. J. Biochem. 2004. 217. P. 1638-1650. CrossRef PubMed
  21. Halestrap A.P., Clarke S.J., Javadov S.A. Mitochon­drial permeability transition pore opening during myo­cardial reperfusion-a target for cardioprotection . Car-diov. Res. 2004. 61. P. 372-385. CrossRef  
  22. Harman D. The free radical theory of aging . Antioxid. Redox. Signal. 2003. 5, N 5. P.557-561. CrossRef PubMed
  24. Hodge T., Colombini M. Regulation of metabolite flux through voltage-gating of VDAC channels . J. Membr. Biol. 1997. 157, N 3. P. 271-279. 16.Juhaszova M., Wang S., Zorov D.B., Nuss H.B., Gleichmann M., Mattson M.P., Sollott S.J. The iden­tity and regulation of the mitochondrial permeability transition pore. Ann. N. Y. Acad. Sci. 2008. 1123. P. 197-212. CrossRef PubMed
  26. Klingenberg M. The ADP-ATP translocation in mito­chondria, a membrane potential controlled transport . J. Membr. Biol. 1980. 56. P. 97-105. CrossRef PubMed
  28. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 . Na­ture. 1970. 227. P. 680-685. CrossRef PubMed
  30. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent . J. Biol. Chem. 1951. 193, N 1. P.265-275.
  32. Mayer B., Oberbauer R. Mitochondrial regulation of apoptosis . News Physiol. Sci. 2003. 18. P. 89-94. CrossRef PubMed
  34. Passarella S., Atlante A., Valenti D., Bari L. The role of mitochondrial transport in energy metabolism . Mito­chondrion. 2003. 2. P. 319-343. CrossRef  
  35. Rostovtseva T., Colombini M. ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane . J. Biochem. Chem. 1996. 271. P. 28006-28008. CrossRef PubMed
  37. Shoshan-Barmatz V., Gincel D. The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death . Cell Biochem Biophys. 2003. 39, N 3. P. 279-292. CrossRef  
  38. Simamura E., Shimada H., Hatta T., Hirai K. Mito­chondrial voltage-dependent anion channels (VDACs) as novel pharmacological targets for anti-cancer argents . J. Bioner. Biomembr. 2008. 40, N 3. P. 213-217. CrossRef PubMed
  40. Sorgato M., Moran O. Channels in mitochondrial membranes: knowns, unknowns, and prospects for the future . Crit. Rev. Biochem. Mol. Biol. 1993. 28. P. 127-171. CrossRef PubMed
  42. Weiss J.N., Korge P., Honda H.M., Ping P. Role of the mitochondrial permeability transition in myocardial disease . Circulat. Res. 2003. 93. P. 292-301. CrossRef PubMed
  44. Yuqi L., Lei G., Yang L., Zongbin L, Hua X, Lin W, Rui C, Mohan L, Yi W, Minxin G., Shiwen W. Voltage-dependent anion channel (VDAC) is involved in apoptosis of cell lines carrying the mitochondrial DNA mutation . BMC Med. Genet. 2009. 10. P. 114. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.