Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

(English title: Physiological Journal)

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2010; 56(3): 19-24


Signal function of potassium channels – clinical aspects

Magura IS, Magura OI, Dolga OV, Bogdanova NA, Ageev Sh, Pogorela NKh

    O.O. Bogomoletz Instiute of Physiology National Academy of Science of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz56.03.019


Abstract

Potassium (K+) channels are the most diverse class of ion channels, and are important for regulating neuronal excitability and signaling activity in a variety of ways. They are major determinants of membrane excitability, influencing the resting potential of membranes, wave forms and frequencies of action potentials, and thresholds of excitation. Voltage-gated K+ cannels exist not as independent units merely responding to changes in transmembrane potential but as macromolecular complexes able to integrate a plethora of cellular signals that fine tune channel activities. There are a wide variety of therapeutic agents that are targeted to non-K+ channels, but result in unintended block of K+ channels. This K+ channel block can result in potentially serious and sometimes even fatal side effects.

Keywords: K+ channels; cumulative inactivation; ancillary subunits; neuronal signaling; genetic diseases.

References

  1. Magura IS, Dolga OV, Bogdanova NO Integrative function of nerve cells: the role of potassium channels . Fiziol zh. 2008. 54, N 5. P. 16-22.
  2.  
  3. Aldrich R.W. Inactivation of voltage-gated delayed potassium current in molluscan neurons: a kinetic model . Biophys. J. 1981. 36. P. 519-532. CrossRef.1016/S0006-3495(81)84750-9
  4.  
  5. Baukrowits T., Yellen G. Modulation of K current by frequency and external [K]: a tale of two inactivation mechanisms . Neuron. 1995. 15. P. 951-960. CrossRef.1016/0896-6273(95)90185-X
  6.  
  7. Bezanilla F. Ion channels: from conductance to-structure . Ibid. 2008. 60. P. 456-468. CrossRef PubMed
  8.  
  9. Bett GCL., Rasmusson R.L. Modification of K channel drug interactions by ancillary subunits.J. Physiol. 2008. 586. 4. P. 929-950. CrossRef PubMed PubMedCentral
  10.  
  11. Black D.L. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology . Cell. 2000. 103. P. 367-370. CrossRef.1016/S0092-8674(00)00128-8
  12.  
  13. Choe S. Potassium channel structures . Nat. Rev. Neurosci. 2002. 3 P. 115-121. CrossRef PubMed
  14.  
  15. Consiglio J.F., Andalib P, Korn S.J. Influence of pore residues on permeation properties in the Kv2.1 potas­sium channel. Evidence for a selective functional in­teraction of K+ with the outer vestibule . J. Gen. Physiol. 2003. 2. P. 111-124. CrossRef PubMed PubMedCentral
  16.  
  17. Crouzy S., Berneghe S., Roux B. Extracelluar blockade of K channels by TEA: results from molecular dynam­ics simulations of the KcsA channel . Ibid. 2001. 18. P. 207-217. CrossRef PubMed PubMedCentral
  18.  
  19. Debanne D. Plasticity of neuronal excitability in vivo . J.Physiol. 2009. 587, N 13. P. 3057-3058. CrossRef PubMed PubMedCentral
  20.  
  21. Doyle D.A., Cabral J.M., Pfuetzner R.A., Kuo A, Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. The structure of the potassium channel: Molecular Basis of K+ conduction and selectivity . Science. 1998. 280. P. 69-77.
  22.  
  23. Immke D, Korn S.J. Ion-ion interaction at the selec­tivity filter. Evidence from K+-dependent modulation of tetraethylammonium efficacy in Kv2.1 potassium channels . J. Gen. Physiol. 2000. 115. P. 509-518. CrossRef PubMed PubMedCentral
  24.  
  25. Isom L.L., De Jongh K.S., Catterall W.A. Auxiliary subunits of voltage-gated ion channels . Neuron. 1994. 12. P. 1183-1194. CrossRef.1016/0896-6273(94)90436-7
  26.  
  27. Johnston D, Hoffman D.A., Magee J.C. Dendritic potassium channels in hippocampal pyramidal neurons . J. Physiol. 2000. 525, N 1. P. 75-81. CrossRef PubMed PubMedCentral
  28.  
  29. Heginbotham L., MacKinnon R. The aromatic binding site for tetraethylammonium ion on potassium channels . Neuron. 1992. 8. P. 483-491. Oxford.
  30. CrossRef.1016/0896-6273(92)90276-J  
  31. Kostyuk P. 1998. Plasticity in nerve cell function. Cla­rendon Press, Oxford University Press. 1998. P. 228.
  32.  
  33. Klemic K.G., Shieh C.C., Kirsch G.E., Jones S.W. Inac­tivation of Kv2.1 Potassium Channels . Biophys J. 74. P. 1779-1789. CrossRef.1016/S0006-3495(98)77888-9
  34.  
  35. Klemic K.G., Kirsch G.E., Jones S.W. U-type inacti­vation of Kv3.1 and Shaker potassium channels . Biophys J. 81. P. 814-826. CrossRef.1016/S0006-3495(01)75743-8
  36.  
  37. Ma M., Koester J. The role of K currents in frequency-dependent spike broadening in Aplysia R20 Neurons: a dynamic-clamp analysis . J. Neurosci. 1996. 16. P. 4089-4102. CrossRef PubMed PubMedCentral
  38.  
  39. MacKinnon R. Potassium channels . FEBS Lett. 2003. 555. P. 62-65. CrossRef.1016/S0014-5793(03)01104-9
  40.  
  41. MacKinnon R., Yellen. Mutation affecting TEA block­ade and ion permeation in voltage-activated K channels . Science. 1990. 250. P. 276-279. CrossRef PubMed
  42.  
  43. MacLean J.N., Zhang Y, Johnson B.R., Harris-Warrick R.M. Activity independent homeostasis in rhythmi­cally active neurons . Neuron. 2003. 37. P. 109-120. CrossRef.1016/S0896-6273(02)01104-2
  44.  
  45. Magura I.S., Krishtal O.A., Valeyev A.G. Behaviour of delayed current under long duration voltage clamp in snail neurons . Compar. Biochem. Physiol. 1971. 40A. P. 715- 722. CrossRef.1016/0300-9629(71)90256-8
  46.  
  47. Magura I.S., Kucher V.V., Boiko N.Y Voltage-operated potassium channels and mechanisms controlling their activity . Neurophysiology. 2004. 36. P. 285-292. CrossRef
  48.  
  49. Magura I.S., Zamekhovsky I.Z. Repetitive firing in molluscan giant neurons . Exp. Biol. 1973. 59. P. 767-780.
  50.  
  51. Martens J.R., O'Connell K., Tamkun M., Targeting of ion channels to membrane microdomains: localization of K channels to lipid rafts . Trends Pharmacol. Sci. 2004v. 25. P. 16-21. CrossRef PubMed
  52.  
  53. McDonald T.V., Li Y, Um S.Y Voltage gated potas-sium channels: regulation by accessory subunits . Neuroscientist. 2006. 12. P. 199-209. CrossRef PubMed
  54.  
  55. Miller C. An overview of the potassium channel fam­ily . Genome Biol. 2000. I (4).- P.0004.1-0004.5.
  56. CrossRef PubMed PubMedCentral  
  57. Narayanan R., Johnston D. The ascent of channels with memory . Neuron. 2008. 60. P. 735-738. CrossRef PubMed
  58.  
  59. Papazian D.N. Potassium Channels: some assembly required . Ibid. 1999. 23. P. 7-10. CrossRef.1016/S0896-6273(00)80746-1
  60.  
  61. Patil P.G., Brody D.L., Yue D.T. Preferential closed-state inactivation of neuronal calcium channels . Ibid. 1998. 20. P. 1027-1038. CrossRef.1016/S0896-6273(00)80483-3
  62.  
  63. Spitzer N.C. New dimensions of neuronal plasticity . . Nat. Neuroscie. 1999. 2. P. 489-490. CrossRef PubMed
  64.  
  65. Spruston P.J. Pyramidal neurons: dendritic structure and synaptic integration . Nat. Rev. Neurosci. 2008. 9. P. 206-221. CrossRef PubMed
  66.  
  67. Thompson J., Begenisich T. External TEA block of shaker K+ channels is coupled to the movement of K ions within the selectivity filter . J. Gen. Physiol. 2003. 122. P. 239-246. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2025.