Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2010; 56(1): 41-53

Modulation of cardiomyocyte excitability by activator adenosine triphosphate dependent potassium channels flocaline

O.I. Voitychuk, О.О. Moibenko, Y.M. Shuba.

  1. International Center of Molecular Physiology, Kyiv, Ukraine
  2. O.O.Bogomoletz Institute of Physiology, National Academyof Sciences of Ukraine, Kyiv, Ukraine


ATP-sensitive potassium (K) channels activated by decrease in ATP/ADP ratio link cellular membrane potential with excit­ability, energy balance and metabolism. Under pathologic conditions of hypoxia and ischemia activation of plasma membrane KAT P channels reduces cell excitability and decreases carcium entry producing cytoprotective effect. In the current work we studied effects of a new fluorine containing pinacidil analogue flocalin on excitability of native cultured cardiomyo-cytes of neonatal rats and on activity of recombinant car-diospecific KATP channel in HEK-293 cells with stable heter­ologous expression of forming subunits Kir6.2 and SUR2A (HEK-293 6.2/2A). It was found that 5 uM flocalin induces reversible hyperpolarization and significant shortening of ac­tion potential (AP) in atrial, ventricular and spontaneously contracting neonatal cardiomyocytes. Atrial and ventricular epicardial cells showed decrease in amplitude and AP upstroke velocity. Flocalin significantly reduced contraction frequency and reversibly decreased resting diastolic potential of sponta­neously contracting cardiomyocytes. In HEK-293 6.2/2 cells flocalin dose-dependently activated time-independent K+ current with weak inward rectification through heterogously expressed KATP channels. Half-maximal flocalin concentration of current activation equals 8.8 uM and curve slope factor suggests positive cooperativity of flocalin binding to KATP channels. Our data show that flocalin is indeed an effective inhibitor of electrical and contractile activity of cardiomyo-cytes due to opening of cardiospecific KAT P channels and this property substantially mediates cardioprotection.

Keywords: neonatal cardiomyocytes, HEK-293 cells, ATP-sensitive potassium channels, resting potential, action poten-tial, flocalin


  1. Moibenko OO, Dosenko VE, Parkhomenko AN Endogenous mechanisms of cardioprotection as a basis for pathogenetic therapy of heart disease. K .: Sciences. opinion. 2008.
  3. Moibenko OO, Strutinsky RB, Yagupolsky LM etc. Development and preparation for introduction of a new domestic cardioprotective drug fluorine-containing activator of ATP-dependent potassium channels Flokalin . Science and Innovation. 2006. 2, N 4. P. 114-119. CrossRef  
  4. Yanchii RI, Juran BV, Phillipov IB The depressing effect of the activator of ATP-dependent potassium channels of floccalin on the electrical and contractile activity of smooth muscle of the guinea pig ureter . Neurophysiology. 2005. 37, N 5-6. P. 403-409. CrossRef  
  5. Aguilar-Bryan L., Clement J.P.t., Gonzalez G. et al. Toward understanding the assembly and structure of KATP channels . Physiol. Rev. 1998. 78, N 1. P. 227-245. CrossRef PubMed
  7. Alekseev A.E., Hodgson D.M., Karger A.B. et al. ATP-sensitive K+ channel channel. enzyme multimer: meta­bolic gating in the heart . J. Mol. Cell. Cardiol. 2005. 38, N 6. P. 895-905. CrossRef PubMed PubMedCentral
  9. Babenko A.P., Aguilar-Bryan L., Bryan J. A view of sur. KIR6.X, KATP channels . Annu. Rev. Physiol. 1998. 60, N P. 667-687. CrossRef PubMed
  11. Babenko A.P., Gonzalez G., Aguilar-Bryan L. et al. Reconstituted human cardiac KATP channels: func­tional identity with the native channels from the sar-colemma of human ventricular cells . Circulat. Res. 1998. 83, N 11. P. 1132-1143. CrossRef PubMed
  13. Bajgar R., Seetharaman S., Kowaltowski A.J. et al. Iden­tification and properties of a novel intracellular (mito­chondrial) ATP-sensitive potassium channel in brain . J. Biol. Chem. 2001. 276, N 36. P. 33369-33374. CrossRef PubMed
  15. Billman G.E. The cardiac sarcolemmal ATP-sensitive potassium channel as a novel target for anti-arrhythmic therapy . Pharmacol. Therap. 2008. 120, N 1. P. 54-70. CrossRef PubMed
  17. Campbell J.D., Sansom M.S., Ashcroft F.M. Potas­sium channel regulation . EMBO Rep. 2003. 4, N 11. P. 1038-1042. CrossRef PubMed PubMedCentral
  19. Cui Y., Giblin J.P., Clapp L.H. et al. A mechanism for ATP-sensitive potassium channel diversity: Functional coassembly of two pore-forming subunits . Proc. Natl. Acad. Sci. USA. 2001. 98, N 2. P. 729-734. CrossRef PubMed PubMedCentral
  21. Flagg T.P., Kurata H.T., Masia R. et al. Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1 . Circulat. Res. 2008. 103, N 12. P. 1458-1465. CrossRef PubMed PubMedCentral
  23. Grover G.J., D'Alonzo A.J., Parham C.S. et al. Car-dioprotection with the KATP opener cromakalim is not correlated with ischemic myocardial action poten­tial duration . J. Cardiovascular. Pharmacol. 1995. 26, N 1. P. 145-152. CrossRef PubMed
  25. Hamada K., Yamazaki J., Nagao T. Shortening of ac­tion potential duration is not prerequisite for cardiac protection by ischemic preconditioning or a KATP channel opener . J. Mol. Cell. Cardiol. 1998. 30, N 7. P. 1369-1379. CrossRef PubMed
  27. Inagaki N., Gonoi T., Clement J.P. et al. A family of sulfonylurea receptors determines the pharmacologi­cal properties of ATP-sensitive K+ channels . Neuron. 1996. 16, N 5. P. 1011-1017. CrossRef  
  28. Ishihara K., Yan D.H., Yamamoto S. et al. Inward rectifier K(+) current under physiological cytoplasmic conditions in guinea-pig cardiac ventricular cells . J. Physiol. 2002. 540, N 3. P. 831-841. CrossRef PubMed PubMedCentral
  30. Lorenz E., Terzic A. Physical association between recombinant cardiac ATP-sensitive K+ channel sub-units Kir6.2 and SUR2A . J. Mol. Cell Cardiol. 1999. 31, N 2. P. 425-434. CrossRef PubMed
  32. Moreau C, Prost A.L., Derand R. et al. SUR, ABC proteins targeted by KATP channel openers . Ibid. 2005. 38, N 6. P. 951-963. CrossRef PubMed
  34. Nakayama K., Fan Z., Marumo F. et al. Interrelation between pinacidil and intracellular ATP concentrations on activation of the ATP-sensitive K+ current in guinea pig ventricular myocytes . Circulat. Res. 1990. 67, N 5. P. 1124-1133. CrossRef PubMed
  36. Nichols C.G., Lederer WJ. Adenosine triphosphate-sen-sitive potassium channels in the cardiovascular system . . Amer. J. Physiol. 1991. 261, N 6 P. H1675-1686. CrossRef PubMed
  38. Noma A. ATP-regulated K+ channels in cardiac muscle . Nature. 1983. 305, N 5930. P. 147-148. CrossRef PubMed
  40. Panten U., Schwanstecher M., Schwanstecher C. Sul­fonylurea receptors and mechanism of sulfonylurea action . Exp. Clin. Endocrinol. Diabetes. 1996. 104, N 1. P. 1-9. CrossRef PubMed
  42. Rogers T.B., Gaa S.T., Allen I.S. Identification and characterization of functional angiotensin II receptors on cultured heart myocytes . J. Pharmacol. Exp. Therap. 1986. 236, N 2. P. 438-444.
  44. Shindo T., Yamada M., Isomoto S. et al. SUR2 subtype (A and B)-dependent differential activation of the cloned ATP-sensitive K+ channels by pinacidil and nicorandil . . Brit. J. Pharmacol. 1998. 124, N 5. P. 985-991. CrossRef PubMed PubMedCentral
  46. Tucker S.J., Ashcroft F.M. A touching case of channelregulation: the ATP-sensitive K+ channel . Curr. Opin. Neurobiol. 1998. 8, N 3. P. 316-320. CrossRef  
  47. Voitychuk O.I., Asmolkova V.S., Gula N.M. et al. [Regulation of the excitability of neonatal cardiomyo-cytes by N-stearyl- and N-oleylethanolamines] . Fiziol. Zh. 2009. 55, N 3. P. 55-66.
  49. Wickenden A.D., Kaprielian R., Parker T.G. et al. Effects of development and thyroid hormone on K+ currents and K+ channel gene expression in rat ventricle . J. Physiol. 1997. 504 ( Pt 2), N P. 271-286. CrossRef PubMed PubMedCentral
  51. Wu S.N., Li H.F., Chiang H.T. Characterization of ATP-sensitive potassium channels functionally expressed in pituitary GH3 cells . J. Membr. Biol. 2000. 178, N 3. P. 205-214. CrossRef PubMed
  53. Wu S.N., Wu A.Z., Sung R.J. Identification of two types of ATP-sensitive K+ channels in rat ventricular myocytes . Life Sci. 2007. 80, N 4. P. 378-387. CrossRef PubMed
  55. Yagupolskii L.M., Maletina I.I., Petko K.I. et al. New fluorine-containing hypotensive preparations . J. Fluor. Chem. 2001. 109, N 1. P. 87-94. CrossRef  
  56. Yokoshiki H., Sunagawa M., Seki T. et al. ATP-sensi­tive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells . Amer. J. Physiol. 1998. 274, N 1 Pt 1. P. C25-37. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2020.