Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2010; 56(1): 30-40


І.М. Pishel, О.О. Yevtushenko, Yu.І. Leonov, N.V. Grygoryeva, Т.V. Orlyk, D.V.Shytikov, V.V. Povoroznyuk, G.М. Butenko.

    Institute of Gerontology of AMS of Ukraine, Kyiv, Ukraine


We studied the association between disturbances of structure and function in bone tissue and (-1082A -> G) polymorphism of IL-10 and (-308A -> G) polymorphism of TNFб genes. SNP-polymerase cyclic reaction was used. The study failed to find significant influence of (-308A -> G) TNF6 polymorphism on the development of bone tissue pathology in postmenopausal women. The patients with AA genotype of -1082A/G IL-10 gene have significantly lower indices of bone density comparing with G allele carriers (GG/AG). This association remained true both for bone tissue density of whole body, and for sepa­rate parts of skeleton: lumbar spine, femur neck, Ward zone of hip bone. Our study indicates that (-308A -> G) polymorphism of TNFa gene is not associated with structural-functional changes in bone tissue in Ukrainian population. However, there is strong evidence that women who carries the AA geno­type of -1082A/G polymorphism of IL-10 gene have signifi­cantly lower bone tissue density. This indicates the potentialfor predictive genetic testing of osteoporosis risk. Analyses of gene combination IL-10 -1082G/G and TNFa -308G/G («anti­inflammatory genotype») did not show any significant asso­ciation of this genotype with bone tissue characteristics, which shows low predictive value of this combination for diagnos­tics of structural-functional state of bone tissue.

Keywords: gene polymorphisms, bone tissue, aging, IL-10,TNF


  1. Butenko GM Osteoporosis and the immune system . Problems of osteology. 1999. 2, N 3. P.23-28.
  3. Bajnok E., Takacs I., Vargha P. et al. Lack of associa­tion between interleukin-1 receptor antagonist protein gene polymorphism and bone mineral density in Hungarian postmenopausal women . Bone. 2000. 27,N 3. P.559-562. CrossRef  
  4. Bayley J.P., Ottenhoff T.H., Verweij C.L. Is there a future for TNF promoter polymorphisms . Genes Immun. 2004. 5, N 1. P.315-329. CrossRef PubMed
  6. Bruunsgaard H., Pedersen B.K. Age-related inflam­matory cytokines and disease . Immunol. Allergy Clin. Nrth Am. 2003. 23, N 1. P.15-39. CrossRef  
  7. Chen H.Y., Chen W.C., Wu M.C. et al. Interleukin-1beta and interleukin-1 receptor antagonist gene poly­morphism in postmenopausal women: correlation to bone mineral density and susceptibility to osteoporo­sis . Maturitas. 2002. 44, N 1. P.49-54. CrossRef  
  8. Duncan E.L., Brown M.A., Sinsheimer J. et al. Sugges­tive linkage of the parathyroid receptor type 1 to os­teoporosis . J. Bone Miner. Res. 1999. 14, N 12. P.1993-1999. CrossRef PubMed
  10. Eisman J.A. Genetics of osteoporosis . Endocrine Rev. 2000. 20, N 6. P.788-804. CrossRef PubMed
  12. Ferrari S.L., Ahn-Luong L., Garnero P. et al. Two pro­moter polymorphisms regulating interleukin-6 gene expression are associated with circulating levels of C-reactive protein and markers of bone resorption in postmenopausal women . J. Clin. Endocrinol. Metab. 2003. 88,N 1. P.255-259. CrossRef PubMed
  14. Ferrari S.L., Garnero P., Emond S. et al. A functional polymorphic variant in the interleukin-6 gene promoter associated with low bone resorption in postmenopausal women . Arthritis Rheum. 2001. 44, N 1. P.196-201. CrossRef  
  15. Fowler E., Eri R., Hume G. et al. TNF{alpha} and IL10 SNPs act together to predict disease behaviour in Crohn's disease . J. Med. Genetics. 2005. 42, N 2. P.523-528. CrossRef PubMed PubMedCentral
  17. Gallagher P.M., Lowe G., Fitzgerald T. et al. Associa­tion of IL-10 polymorphism with severity of illness in community acquired pneumonia . Thorax. 2003. 58,N 1. P.154-156. CrossRef PubMed PubMedCentral
  19. Giacconi R., Cipriano C, Albanese F.C.A. The 174G. C polimorphism of IL-6 is useful to screen old sub- jects at risk for atherosclerosis or to reach successful ageing . Exp. Gerontol. 2004. 39, N 4. P.621-628. CrossRef PubMed
  21. Ginaldi L., De Martinis M., Monti D., Franceschi C. Chronic antigenic load and apoptosis in immuno-senescence . Trends Immunol. 2005. 26, N 1. P.79-84. CrossRef PubMed
  23. Ginaldi L., DiBenedetto M.C, DeMartinis M. Os­teoporosis, inflammation and aging . Immunity & Age­ing. 2005. 2, N 1. P.14-27. CrossRef PubMed PubMedCentral
  25. Gong M.N., Thompson B.T., Williams P.L. et al. Interleukin-10 polymorphism in position 1082 and acute respiratory distress syndrome . Eur. Respir. J. 2006. 27,N 3. P.674-681. CrossRef PubMed PubMedCentral
  27. Gonzalez S., Rodrigo L., Martinez-Borra J. et al. TNF-a-308A promoter polymorphism is associated with enhanced TNF-a production and inflammatory activ­ity in Crohn's patients with fistulizing disease . Amer. J. Gastroenterol. 2003. 98, N 1. P.1101-1111. CrossRef PubMed
  29. Haider A.S., Lowes M.A., Su6rez-Faricas M. et al. Iden­tification of cellular pathways of «Type 1,» Th17 T cells, and TNF- and inducible Nitric Oxide Synthase-produc-ing dendritic cells in autoimmune inflammation through pharmacogenomic study of Cyclosporine A in psoriasis . J. Immunol. 2008. 180, N 3. P.1913-1920. CrossRef PubMed
  31. Hajeer A.H., Hutchinson I. Influence of TNF-b gene polymorphisms on TNF-a production and disease . Hum. Immunol. 2001. 62, N 4. P.1191-1199.
  32. CrossRef  
  33. Hirose K., Tomiyama H., Okazaki R. et al. Increased pulse wavevelocity associated with reduced calcaneal quantitative osteo-sono index: possible relationship between atherosclerosis and osteopenia . J. Clin. Endocrinol. Metab. 2003. 88, N 6. P.2573-2578. CrossRef PubMed
  35. Hofbauer L.C., Gori F., Riggs B.L. et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of gluco-corticoid-induced osteoporosis . Endocrinology. 1999. 140,N 5. P.4382-4389. CrossRef PubMed
  37. Katagiri T., Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation . Oral. Dis. 2002. 8,N 1. P.147-159. CrossRef PubMed
  39. Krishnamurthy P., Rajasingh J., Lambers E. et al. IL-10 Inhibits inflammation and attenuates left ventricu­lar remodeling after myocardial infarction via activa­tion of STAT3 and suppression of HuR . Circulat. Res. 2009. 104, N 1. P.e9 e18. CrossRef PubMed PubMedCentral
  41. Langdahl B.L., Knudsen J.Y., Jensen H.K. et al. A se­quence variation: 713-8delC in the transforming growth factor-beta 1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and in­creased bone turnover in both osteoporotic and normal women . Bone. 1997. 20, N 1. P.289-294. CrossRef  
  42. Manolagas S.C. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis . Endo­crine Rev. 2000. 21, N 2. P.115-137.25. Manolagas S.C., Weinstein R.S. New developments in the pathogenesis and treatment of steroid-induced os­teoporosis . J. Bone Miner. Res. 1999. 14, N 6. P.1061-1066. CrossRef PubMed
  44. Mencej S., Albagha O.M.E., Janez Preelj. et al. Tu­mour necrosis factor superfamily member 11 gene pro­moter polymorphisms modulate promoter activity and influence bone mineral density in postmenopausal women with osteoporosis . J. Mol. Endocrin. 2008. 40,N 1. P.273-279. CrossRef PubMed
  46. Moffett S.P., Zmuda J.M., Oakley J.I. et al. Tumor necro­sis factor-a polymorphism, bone strength phenotypes, and the risk of fracture in older women . J. Clin. Endocrin. & Metabol. 2005. 90, N . 6. P.3491-3497. CrossRef PubMed
  48. Monneret G., Finck M.E., Venet F. et al. The anti­inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration . Immunol. Lett. 2004. 95,N 1. P.193-198. CrossRef PubMed
  50. Nanes M.S. Tumor necrosis factor- b molecular and cellular mechanisms in skeletal pathology . Gene. 2003. 321,N 1. P.1 15. CrossRef  
  51. Oberholzer A., Oberholzer C, Moldawer L.L. Interleukin-10: a complex role in the pathogenesis of sepsis syn­dromes and its potential as an anti-inflammatory drug . Crit. Care. Med. 2002. 30, N 1. P. S58-S63. CrossRef  
  52. Ota N., Hunt S.C., Nakajima T. et al. Linkage of human tumor necrosis factor-alpha to human osteoporosis by sib pair analysis . Genes. Immun. 2000. 1, N 4. P.260-264. CrossRef PubMed
  54. Owens J.M., Gallagher A.C., Chambers T.J. IL-10 modu­lates formation of osteoclasts in murine hemopoietic cultures . J. Immunol. 1996. 157, N 2. P.936-945.
  56. Palmeri S., Lio D., Vaglica M. et al. Caruso Analysis of interleukin 10 (IL-10)-1082G. A single nucleotide poly­morphism (SNP) genotypes in breast cancer (BC) pa­tients (pts) and in >95 years old cancer free women . J. Clin. Oncol. 2005. 23, S 16. P.9656-9664. CrossRef  
  57. Poli , Balena R., Fattori E. et al. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion . EMBO J. 1994. 13, N 10. P.1189-1196. CrossRef PubMed PubMedCentral
  59. Prevention and management of osteoporosis. WHO: Geneva, 2003. 192 p.
  61. Ralston S.H. Genetic control of susceptibility to os­teoporosis . J. Clin. Endocrinol. Metab. 2002. 87, N 6. P.2460-2466. CrossRef  
  62. Reuss E., Fimmers R., Kruger A. et al. Differential regulation of interleukin-10 production by genetic and environmental factors-a twin study . Genes Immunol. 2002. 3,N 2. P.407-413. CrossRef PubMed
  64. Roubenoff R. Catabolism of aging: is it an inflammatory process . Curr. Opin.Clin. Nutr. Metab. Care. 2003. 6,N 1. P.295-299. CrossRef  
  65. Sasaki H., Hou L., Belani A. et al. IL-10, but N t IL-4, suppresses infection-stimulated bone resorption in vivo . J. Immunol. 2000. 165, N 9. P.3626-3630. CrossRef PubMed
  67. Schulte C.M., Dignass A.U., Goebell H. et al. Genetic factors determine extent of bone loss in inflammatory bowel disease . Gestroenterology. 2000. 119, N 4. P.909-1020. CrossRef PubMed
  69. Seeman E. Physiology of aging invited review: Patho­genesis of osteoporosis . J. Appl. Physiol. 2003. 95,N 12. P.2142-2151. CrossRef PubMed
  71. Shi X.M., Chang Z.J., Blair H.C. et al. Glucocorti­coids induce adipogenesis of stromal cells by tran­scriptionally activating PPARy2 . Bone. 1998. 23, S6. P.S454-S462.
  73. Suarez A., Castro P., Alonso R. et al. Interindividual variations in constitutive interleukin-10 messenger RNA and protein levels and their association with ge­netic polymorphisms . Transplantation. 2003. 75, N 3. P.711-717. CrossRef PubMed
  75. Takacs I., Koller DL., Peacock M. et al. Sib pair link­age and association studies between bone mineral den­sity and the interleukin-6 gene locus . Bone. 2000. 27,N 1. P.169-173. CrossRef  
  76. Wallin R., Wajih N., Greenwood G.T., Sane D.C. Arterial calcification: a review of mechanisms, animal models, and the prospects for therapy . Med. Res. Re 2001. 21,N 1. P.274-301. CrossRef PubMed
  78. Weitzmann M.N., Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale . J. Clin. Invest. 2006. 116, N 4. P.1186-1194. CrossRef PubMed PubMedCentral
  80. Yun A.J., Lee P.Y. Maladaptation of the link between inflammation and bone turnover may be a key determi­nant of osteoporosis . Med. Hypotheses. 2004. 63, N 2. P.532-537. CrossRef

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.