Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2009; 55(4): 24-31


PARTICIPATION OF CA2+-ATPASE IN CALCIUM HOMEOSTASIS OF CEREBELLAR NEURONS IN CRUCIAN

I.A. Lukyanets, P.G. Kostyuk, E.A. Lukyanetz

    O.O.Bogomoletz Institute of Physiology, NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz55.04.024


Abstract

In our experiments the participation of endoplasmic reticulum Ca2+-ATPase (SERCA) was studied as a separate intracellular participant of calcium homeostasis in neurons of cerebellum from hypoxia-tolerant fish species – crucian Carassius gibelio. The SERCA’s blockers cyclopiazonic acid and tapsigargin were used. Intracellular Ca2+ concentration ([Ca2+]i) was measured by Ca2+-sensitive dye Fura-2AM and microfluorescent method for measuring free Ca2+ concentration. We established that cerebellar neurons of crucian have a well expressed system to clean the cytoplasm from Ca2+ overflow that is presented by SERCA-pump of endoplasmic reticulum. The switching off a SERCA-pump by means of its selective blockers results in increase of the Ca2+-transient amplitude and Ca2+ entrance in the cell approximately by 20% -100 % in comparison to con­trol depending on duration of depolarization. It is assumed, that SERCA-pump of crucian neurons like in mammals sub­stantially affects temporary and amplitude characteristics of calcium signals in neurons and plays a considerable role in cleaning of cytoplasm from Ca2+ during functional activity of the cell.

Keywords: Calcium ATPase - SERCA- pump, hypoxia-tolerant species, European carp, calcium, neurons, cerebellum

References

  1. Bickler P.E. Clinical perspectives: neuroprotection lessons from hypoxia-tolerant organisms . J. Exp.Biol. 2004. 207. P. 3243-3249. CrossRef PubMed
  2.  
  3. Bickler P.E., Buck L.T. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability . Annu.Rev.Physiol. 2007. 69. P. 145-170. CrossRef PubMed
  4.  
  5. Bickler P.E., Fahlman C.S. Moderate increases in intracellular calcium activate neuroprotective signals in hippocampal neurons . Neuroscience. 2004. 127. P. 673-683. CrossRef PubMed
  6.  
  7. Bootman M.D., Lipp P.,Berridge M.J. The organisation and functions of local Ca(2+) signals . J.Cell. Sci. 2001. 114. P. 2213-2222. PubMed
  8.  
  9. Ford L.E., Podolsky R.J. Regenerative calcium release within muscle cells . Science. 1970. 167. P. 58-59. CrossRef PubMed
  10.  
  11. Hochachka P.W., Lutz P.L. Mechanism, origin, and evolution of anoxia tolerance in animals . Comp. Biochem.Physiol. Biochem. Mol. Biol. 2001. 130. P. 435-459. CrossRef  
  12. Kostyuk P.G., Shmigol A.V. Intracellular stores and calcium signalling in mammalian sensory neurones . Bioelectrochem. Bioenerg. 1997. 42. P. 197-205. CrossRef  
  13. Kristian T., Siesjo B.K. Calcium in ischemic cell death . Stroke. 1998. 29. P. 705-718. CrossRef PubMed
  14.  
  15. Lipton S.A. Neuronal protection and destruction by NO . Cell. Death. Differ. 1999. 6. P. 943-951. CrossRef PubMed
  16.  
  17. Lukyanetz E.A. Influence of hypoxia on Ca2+ homeostasis in neurons. In: Receptors, channels and messengers (eds. Kostyuk P.G., Lukyanetz E.A.)/ Kiev: DUS, 2005. P. 236-270.
  18.  
  19. Lukyanetz E.A., Stanika R.I., Koval L.M., Kostyuk P.G. Intracellular mechanisms of hypoxia-induced calcium increase in rat sensory neurons . Arch. Biochem. and Biophys. 2003. 410. P. 212-221. CrossRef  
  20. Lutz P.L., Nilsson G.E. Vertebrate brains at the pilot light . Respir.Physiol Neurobiol. 2004. 141. P. 285-296. CrossRef PubMed
  21.  
  22. Mogami H., Nakano K., Tepikin A.V.,Petersen O.H. Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch . Cell. 1997. 88. P. 49-55. CrossRef  
  23. Nielsen S.P., Petersen O.H. Transport of calcium in the perfused submandibular gland of the cat . J.Physiol. 1972. 223. P. 685-697. CrossRef PubMed PubMedCentral
  24.  
  25. Nilsson G.E., Lutz P.L. Anoxia tolerant brains . J.Cereb. Blood. Flow. Metab. 2004. 24. P. 475-486. CrossRef PubMed
  26.  
  27. Nilsson G.E., Renshaw G.M. Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark . J.Exp. Biol. 2004. 207. P. 3131-3139. CrossRef PubMed
  28.  
  29. Shkryl V.M., Nikolaenko L.M., Kostyuk P.G., Luky-anetz E.A. High-threshold calcium channel activity in rat hippocampal neurones during hypoxia . Brain. Res. 1999. 833. P. 319-328. CrossRef  
  30. Shmigol A., Kostyuk P., Verkhratsky A. Role of caffeine-sensitive Ca2+ stores in Ca2+ signal termination in adult mouse DRG neurones . Neuroreport. 1994. 5. P. 2073-2076. CrossRef PubMed
  31.  
  32. Stewart E.R., Reese S.A.,Ultsch G.R. The physiology of hibernation in Canadian leopard frogs (Rana pipiens) and bullfrogs (Rana catesbeiana) . Physiol. Biochem. Zool. 2004. 77. P. 65-73. CrossRef PubMed
  33.  
  34. Werth J.L., Usachev Y.M.,Thayer S.A. Modulation of calcium efflux from cultured rat dorsal root ganglion neurons . J. Neurosci. 1996. 16. P. 1008-1015. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.