Українська Русский English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2009; 55(3): 118-124


Acid-base status and fructose diphosphataseactivity in rats exposed to fluoride and induced periodontitis

J. Khalili, H.F. Biloklytska, H.V. PogrebnyaK.

    Department of Therapeutic Stomatology, NationalMedical Academy of Postgraduate Education, namedafter P. L. Shupyk, Kiev


Abstract

This study was conducted to evaluate acid-base status and fructose diphosphatase (FDPase) activity in 40 (4 groups of 10) male Wistar rats. One group of rats was left untreated as control, fed a standard diet, and given distilled water. Periodontitis model induced with 5 mg/kg NH4Cl (group 1), exposed to sodium fluoride (NaF) at the concentration 5 mg/l (group 2), exposed to NaF (5 mg/l) and supplemented with minerals and vitamins (group 3). At the termination of experimental period (30 days) the pH and pCO2 value of arterial blood were analysed. Then, the FDPase activity in the hemogenized heart, kidney, liver, mandible, pelvis, and teeth were determined by measuring inorganic phosphate that converts from fruc-tose-1.6-diphosphate and using spectrophotometer at 350 nm. The differences in the acid-base status and FDPase activity in the groups 1 and 2 were statistically significant in comparison with the control and group 3 (P<0.001). Increased FDPase activities are associated with acid-base status. The minerals and vitamins supplementation proved to restore acid-base balance, reduce toxicity and establish steady enzyme activity, which has not been previously reported.

References

  1. Bhussry B.R., Demole V. , Hodge H.C. et al. Toxic effects of larger doses of fluoride // Monogr. Ser. World. Health Organ. – 1970. – 59. – P. 225–271.
  2. Monsour P.A., Kruger B.J. Effect of fluoride on soft tissues in vertebrates // Fluoride. – 1985. – 18. – P. 53–61.
  3. Biloklits’ka G.F., Pakhomova V.O., Mel’nichuk D.O. et al. New ways of correcting metabolic acidosis in ex­perimental periodontitis // Fiziol. Zh. – 2000. – 46. – P. 77–82.
  4. Voet D., Voet J.G., Pratt C.W. Fundamentals of Biochemistry. Chap.13. – New York: John Wiley and Sons, 2002.
  5. Pakhomova V.O., Biloklyts’ka H.F., Protunkevych O.O. et al. An assessment of acid-base imbalance in body tissues and fluids // Fiziol. Zh. – 1999. – 45. – P. 103–109.
  6. Sumner J.B., Somers G.F. Chemistry and Methods of Enzymes. – 2nd ed. – New York: Academic Press Inc., 1947.
  7. Tanner G.A. Renal regulation of acid-base balance: ammonia excretion // Physiologist. - 1984. – 27. – P. 95–97.
  8. Epler M.J., Souba W.W., Meng Q. et al. Metabolic acidosis stimulates intestinal glutamine absorption // J. Gastrointest. Surg. – 2003 – 7. – P. 1045–1052.
  9. 9. Green M.L., Hatch M., Freel R.W. Ethylene Glycol Induces Hyperoxaluria without Metabolic Acidosis in Rats // Amer. J. Physiol. Renal. Physiol. – 2005. – 289. – P. 536–543.
  10. 10. DenBesten P.K. Biological mechanisms of dental fluo-rosis relevant to the use of fluoride supplements // Community Dent Oral Epidemiol. – 1999. – 27. – P. 41–47.
  11. Gupta S.K., Gambhir S., Mithal A., Das B.K. Skeletal scintigraphic findings in endemic skeletal fluorosis // Nucl. Med. Commun. – 1993. – 14. – P. 384-390.
  12. Krishnamachari K.A. Skeletal fluorosis in humans: a review of recent progress in the understanding of the disease // Prog. Food. Nutr. Sci. – 1986. – 10. – P. 279–314.
  13. Carlson J.R., Suttie J.W. Pentose phosphate pathway enzymes and glucose oxidation in fluoride-fed rats // Amer. J. Physiol. – 1966. – 210. – P. 79–83.
  14. Vani M.L., Reddy K.P. Effects of fluoride accumula­tion on some enzymes of brain and gastrocnemius muscle of mice // Fluoride. – 2000. – 33. – P. 17–26.
  15. Park S., Ajtai K., Burghardt T.P. Inhibition of myosin ATPase by metal fluoride complexes // Biochim. Biophys. Acta. – 1999. – 1430. – P. 127–140.
  16. Iynedjian P.B., Jacot M.M. Glucocorticoid-dependent induction of mRNA coding for phosphoenolpyruvate carboxykinase (GTP) in rat kidney. Its inhibition by cycloheximide // Eur. J. Biochem. – 1980. – 111. – P. 89–98.
  17. Arnaud M.J. Update on the assessment of magnesium status // Brit. J. Nutr. – 2008. – 99. – P. S24–36.
  18. Morgan K.J., Stampley G.L., Zabik M.E., Fischer D.R. Magnesium and calcium dietary intakes of the U.S. popu-lation // J. Amer. Coll. Nut. – 1985. – 4. – P. 195–206.
  19. 19. Baquer N.Z., Sinclair M., Kunjara S. et al. Regulation of glucose utilization and lipogenesis in adipose tissue of diabetic and fat fed animals: Effects of insulin and manganese // J. Biosci. – 2003. – 28. – P. 215–221.
  20. 20. Nissim I., States B., Nissim I. et al. Hormonal regulation of glutamine metabolism by OK cells // Kidney Int. – 1995. – 47. – P. 96–105.
  21. Miller R.T., Pollock A.S. Modification of the internal pH sensitivity of the Na+/H+ antiporter by parathyroid hormone in cultured renal cell lines // J. Biol. Chem. – 1987. – 262. – P. 9115–9120.
  22. Nissim I., Nissim I., Yudkoff M. Adaptation of renal tricarboxylic acid cycle metabolism to various acid-base states: study with [3-13C,5-15N] glutamine // Miner. Electrolyte Metab. – 1991. – 17. – P. 21–31.
  23. Chausmer A.B. Zinc, Insulin and Diabetes // J. Amer. Coll. Nutr. – 1998. – 17. – P. 109–115.
  24. Wolman S.L., Anderson G.H., Marliss E.B., Jeejeebhoy K.N. Zinc in total parenteral nutrition: requirements and metabolic effects // Gastroenterology. – 1979. – 76. – P. 458–567.
  25. Goodman D.S. Vitamin A and retinoids in health and disease // N. Engl. J. Med. – 1984. – 310. – P. 1023– 1031.
  26. Martin K.R., Failla M.L., Smith J.C.Jr. Beta-carotene and leutin protect HepG2 human liver cells against oxi-dant-induced damage // J. Nutr. – 1996. – 126. – P. 2098–2106. .. .. ..
  27. Gulkac M.D., Akpinar G., Ustun H., Ozon Kanli A. Effects of vitamin A on doxorubicin-induced chromo­somal aberrations in bone marrow cells of rats // Mu-tagenesis. – 2004. – 19. – P. 231–236.
  28. Hendriks H.F., Bosma A., Brouwer A. Fat-storing cells: hyper- and hypovitaminosis A and the relationships with liver fibrosis // Semin. Liver Dis. – 1993. – 13. – P. 72–80.
  29. 29. Jacob R.A. The integrated antioxidant system // Nutr. Res. – 1995. – 15. – P. 755–766.
  30. 30. Odigie I.P., Okpoko F.B., Ojobor P.D. Antioxidant ef­fects of vitamin C and E on phenylhydrazine-induced haemolysis in sprague dawley rats: evidence for a bet­ter protection by vitamin E // Niger. Postgrad. Med. J. – 2007. – 14. – P. 1–7.
  31. Doqun E.S., Ajala M.O. Ascorbic acid and alpha toco-pherol antioxidant status of type 2 diabetes mellitus pa­tients seen in lagos // Ibid. – 2005. – 12. – P. 155–157.
  32. Langman C.B. Calcitriol metabolism during chronic meta­bolic acidosis // Semin. Nephrol. – 1989. – 9. – P. 65–71.
  33. Mahlbacher K., Sicuro A., Gerber H. et al. Growth hormone corrects acidosis induced negative nitrogen balance and renal phosphate depletion and attenuates renal magnesium wasting in humans // Metabolism. – 1999. – 48. – P. 763–770.
  34. Booth B.E., Tsai H.C., Morris R.C. Jr. Metabolic aci-dosis in vitamin-D deficient chicks // Metabolism. – 1977. – 26. – P. 1099–1105.
  35. Reddy G.S., Jones G., Kooh S.W., Fraser D. Inhibition of 25-hydroxyvitamin D3-1-hydroxylase by chronic metabolic acidosis // Amer. J. Physiol. – 1982. – 243. – P. E265–271.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2019.