Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2009; 55(3): 55-66


REGULATION OF THE EXCITABILITY OF NEONATAL CARDIOMYOCYTES BY N-STEARYL- AND N-OLEYLETHANOLAMINES

O.I. Voitychuk1, V.S. Asmolkova2, N.M. Gula2, G.V. Sotkis1, M. Oz3, Y.M. Shuba1

  1. International Center of Molecular Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  2. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  3. Department of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, UAE



Abstract

N-acylethanolamines (NAE) are biologically active lipids able of modulating ion transport through the cellular plasma membrane, however specific targets of their action and signal­ling mechanisms involved in cardiac tissue are still poorly un­derstood. Physiological activity of NAEs is known to depend on the level of unsaturation. Therefore, here we investigated the effects of saturated N-stearylethanolamine (NSE) and monounsaturated N-oleylethanolamine on electric excitability of neonatal rat cardiomyocytes. 1 HM of either NSE or OEA de­creased the duration of cardiac action potential (AP) from all parts of heart muscle. Shortening of AP was partially reversible, though the reversibility of AP duration upon washout of sub­stances was more complete for endocardial ventricular compared to epicardial and atrial cardiomyocytes. 1 ^M NSE depolarized resting membrane potential (RMP) of epicardial and of 65% of endocardial cells, whilst other cells types showed weakly reversible hyperpolarization. 1 HM OEA caused reversible RMP hyperpolarization of all studied cell types. NSE and OEA decreased the amplitude and upstroke velocity of AP that suggests their effect on sodium channels. NSE and to a lesser extent OEA inhibited the amplitude of AP phase 2 (pla­teau) which may indicate an inhibition of high-voltage-activated calcium channels. Effects of NSE and OEA on RMP and repolarization phase of AP (phase 3) depended on cardiac cell type suggesting differential regulation of inward rectifier Kir and voltage-gated delayed rectifier potassium channels by these lipids. We cannot also exclude interaction of NSE and OEA with anion channels, backgound K+ channels and ion transport­ers of the cardiomyocytes’ plasma membrane. Overall, NSE-induced changes of AP parameters were less reversible than those induced by OEA, suggesting a slower degradation/ convertion of NSE in plasma membrane compared to OEA.

Keywords: N-acylethanolamines, N-stearylethanolamine, cardiomyocytes, rat

References

  1. Artamonov M.V., Zhukov O.D., Marhitych V.M. et al. Effect of exogenous N-stearoylethanolamine on fatty acid composition of individual phospholipids in the iso­lated rat heart under postischemic reperfusion . Ukr Biokhim Zh. 2002. 74. P. 86-94.
  2. Barann M., Molderings G., Bruss M. et al. Direct inhibition by cannabinoids of human 5-HT3A receptors: probable involvement of an allosteric modulatory site . Brit. J. Pharmacol. 2002. 137. P. 589-596.
  3. Brown A.J. Novel cannabinoid receptors .Ibid. 2007. 152. P. 567-575.
  4. Chemin J., Monteil A., Perez-Reyes E. et al. Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide . EMBO J. 2001. 20. P. 7033-7040.
  5. Chemin J., Nargeot J., Lory P. Chemical determinants involved in anandamide-induced inhibition of T-type calcium channels . J. Biol. Chem. 2007. 282. P. 2314-2323.
  6. Coyne L., Lees G., Nicholson R.A. et al. The sleep hormone oleamide modulates inhibitory ionotropic receptors in mammalian CNS in vitro . Brit. J. Pharmacol. 2002. 135. P. 1977-1987.
  7. Evans R.M., Scott R.H., Ross R.A. Multiple actions of anandamide on neonatal rat cultured sensory neurones . Ibid. 2004. 141. P. 1223-1233.
  8. Fisyunov A., Tsintsadze V. , Min R. et al. Cannabinoids modulate the P-type high-voltage-activated calcium currents in purkinje neurons . J Neurophysiol. 2006. 96. P. 1267-1277.
  9. 9. Gebremedhin D., Lange A.R., Campbell W.B. et al. Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current . Amer. J. Physiol. 1999. 276. P. H2085-2093.
  10. 10. Grandy S.A., Trepanier-Boulay V. , Fiset C. Postnatal development has a marked effect on ventricular repolarization in mice . Amer. J. Physiol. Heart Circu­lar. Physiol. 2007. 293. P. H2168-2177.
  11. Gurney A., Manoury B. Two-pore potassium channels in the cardiovascular system . Eur. Biophys J. 2009. 38. P. 305-318
  12. Gussak I., Antzelevitch C., Hammill S.C. et al. Cardiac Repolarization. Humana press. 2003. 568 p.
  13. Hampson A.J., Bornheim L.M., Scanziani M. et al. Dual effects of anandamide on NMDA receptor-medi­ated responses and neurotransmission . J. Neurochem. 1998. 70. P. 671-676.
  14. Hampson R.E., Evans G.J., Mu J. et al. Role of cyclic AMP dependent protein kinase in cannabinoid receptor modulation of potassium “A-current” in cultured rat hippocampal neurons . Life Sci. 1995. 56. P. 2081-2088.
  15. Ho B.Y., Uezono Y. , Takada S. et al. Coupling of the expressed cannabinoid CB1 and CB2 receptors to phospholipase C and G protein-coupled inwardly rectifying K+ channels . Receptors Channels. 1999. 6. P. 363-374.
  16. Huang C.C., Lo S.W., Hsu K.S. Presynaptic mecha­nisms underlying cannabinoid inhibition of excitatory synaptic transmission in rat striatal neurons . J. Physiol. 2001. 532. P. 731-748.
  17. Kilborn M.J., Fedida D. A study of the developmental changes in outward currents of rat ventricular myocytes . Ibid. 1990. 430. P. 37-60.
  18. Kim H.I., Kim T.H., Shin Y.K. et al. Anandamide sup­pression of Na+ currents in rat dorsal root ganglion neurons . Brain Res. 2005. 1062. P. 39-47.
  19. 19. Lotshaw D.P. Biophysical, pharmacological, and func­tional characteristics of cloned and native mammalian two-pore domain K+ channels . Cell Biochem. Biophys. 2007. 47. P. 209-256.
  20. 20. Maccarrone M., Attina M., Bari M. et al. Anandamide degradation and N-acylethanolamines level in wild-type and CB1 cannabinoid receptor knockout mice of differ­ent ages . J. Neurochem. 2001. 78. P. 339-348.21. Mackie K., Devane W.A., Hille B. Anandamide, an endogenous cannabinoid, inhibits calcium currents as a partial agonist in N18 neuroblastoma cells . Mol. Pharmacol. 1993. 44. P. 498-503.
  21. Maingret F., Patel A.J., Lazdunski M., Honore E. The endocannabinoid anandamide is a direct and selective blocker of the background K(+) channel TASK-1 . EMBO J. 2001. 20. P. 47-54.
  22. Matias I., Gonthier M.P., Petrosino S. et al. Role and regulation of acylethanolamides in energy balance: fo­cus on adipocytes and beta-cells . Brit. J. Pharmacol. 2007. 152. P. 676-690.
  23. Matsuda L.A. Molecular aspects of cannabinoid receptors . Crit. Rev. Neurobiol. 1997. 11. P. 143-166.
  24. Natarajan V. , Schmid P.C., Schmid H.H. N-acyl-ethanolamine phospholipid metabolism in normal and is-chemic rat brain . Biochim. et Biophys. Acta. 1986. 878. P. 32-41.
  25. Oz M., Ravindran A., Diaz-Ruiz O. et al. The endog­enous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes . J. Pharmacol. Exp. Therap. 2003. 306. P. 1003-1010.
  26. Pacher P. , Hasko G. Endocannabinoids and cannabinoid receptors in ischaemia-reperfusion injury and precondi­tioning . Brit. J. Pharmacol. 2008. 153. P. 252-262.
  27. Pandit S.V., Clark R.B., Giles W.R., Demir S.S. A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes . Biophys. J. 2001. 81. P. 3029-3051.
  28. 29. Rogers T.B., Gaa S.T., Allen I.S. Identification and characterization of functional angiotensin II receptors on cultured heart myocytes . J. Pharmacol. Exp. Therap. 1986. 236. P. 438-444.
  29. 30. Rosen M.R. The electrocardiogram 100 years later: electrical insights into molecular messages . Circula­tion. 2002. 106. P. 2173-2179.
  30. Sanders K.M., Koh S.D. Two-pore-domain potassium channels in smooth muscles: new components of myogenic regulation . J. Physiol. 2006. 570. P. 37-43.
  31. Schmid P.C., Kuwae T., Krebsbach R.J., Schmid H.H. Anandamide and other N-acylethanolamines in mouse peritoneal macrophages . Chem. Phys. Lipids. 1997. 87. P. 103-110.
  32. Schmid P.C., Wold L.E., Krebsbach R.J. et al. Anandamide and other N-acylethanolamines in human tumors . Lipids. 2002. 37. P. 907-912.
  33. Starowicz K., Nigam S., Di Marzo V. Biochemistry and pharmacology of endovanilloids . Pharmacol Therap. 2007. 114. P. 13-33.
  34. Vasquez C., Navarro-Polanco R.A., Huerta M. et al. Effects of cannabinoids on endogenous K+ and Ca2+ currents in HEK293 cells . Can. J. Physiol. Pharmacol. 2003. 81. P. 436-442.
  35. Verkerk A.O., Veldkamp M.W., Abbate F. et al. Two types of action potential configuration in single cardiac Purkinje cells of sheep . Amer. J. Physiol. 1999. 277. P. H1299-1310.
  36. Wickenden A.D., Kaprielian R., Parker T.G. et al. Ef­fects of development and thyroid hormone on K+ currents and K+ channel gene expression in rat ventricle . J. Physiol. 1997. 504 ( Pt 2). P. 271-286.

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2024.