Українська English

ISSN 2522-9028 (Print)
ISSN 2522-9036 (Online)
DOI: https://doi.org/10.15407/fz

Fiziologichnyi Zhurnal

is a scientific journal issued by the

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

Editor-in-chief: V.F. Sagach

The journal was founded in 1955 as
1955 – 1977 "Fiziolohichnyi zhurnal" (ISSN 0015 – 3311)
1978 – 1993 "Fiziologicheskii zhurnal" (ISSN 0201 – 8489)
1994 – 2016 "Fiziolohichnyi zhurnal" (ISSN 0201 – 8489)
2017 – "Fiziolohichnyi zhurnal" (ISSN 2522-9028)

Fiziol. Zh. 2009; 55(1): 49-56


DIFFERENCES IN MEMBRANE POTENTIAL SENSITIVITY TO POTASSIUM CHANNEL OPENERS AND HYPOXIA BETWEEN INTACT AND CULTURED ENDOTHELIAL CELLS

A.I. Bondarenko

    O.O. Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/fz55.01.049

Abstract

The influence of pinacidil, an activator of ATP-sensitive K+ channels, on the membrane potential of endothelial cells from intact rat aorta and cultured endothelial cells was investigated. Pinacidil evoked a slowly developing sustained hyperpolariza-tion of endothelial cells from isolated artery with the amplitude of 15±4 mV from the resting membrane potential of –4Ш мВ. In contrast, in cultured endothelial cells pinacidil was without response. Diazoxide, another activator of ATP-sensitive K+ channels, in half of the cultured cells tested, evoked a slowly developing sustained hyperpolarization with the amplitude of 3 mV. The rest of the cells studied did not respond by membrane potential changes to diazoxide. It was suggested that high sen­sitivity of the membrane potential of in situ endothelial cells to potassium channels openers may represent a potent signaling mechanism influencing endothelial cell function upon stimula­tion of vascular KATP channels.

Keywords: pinacidil

References

  1. Bondarenko AI, Sagach VF Modulation of the membrane potential of cells of the intact endothelium of the guinea pig aorta . Neurophysiology. 1996. 28, N 6. S.260-266. CrossRef
  2. Bondarenko OI, Prisyazhna OD, Sagach VF Electrical reactions of intact rat aortic endothelium in experimental diabetes . Fiziol Zh. 2004. 50, N 6. C 3-8.
  3. Bondarenko OI, Sagach VF Electrical reactions of the aortic endothelium of rats with spontaneous hypertension . Fiziol Zh. 2002. 48, N 4. P.75-79.
  4. Nagibin B.C., Dosenko B.C., Brewer SM Fluorinated diazoxide analogue prevents apoptosis of neonatal cardiomyocytes during anoxia-reoxygenation. Fiziol Zh. 2004. 50, N 3. P.3-8.
  5. Brewer SM., Strutynsky RB, Yagupolsky LM, Moybenko OO Investigation of the mechanisms of action of new fluorine-containing analogues of diaoxide on vascular tone . Fiziol Zh. 2004. 50, N 2. P.27-33.
  6. Chekman IS, Tarasova KV, Shevchuk VG Physiological properties and prospects of correction of the function of adeno-zintriphosphate potassium channels . Fiziol Zh. 2008. 54, N 1. S94-107.
  7. Yarotsky VV, Tkachenko MN Sagach VF Electrical reactions of rat aortic endothelium under the action of acetylcholine and ATP under aging conditions . Bull. experiment. biology and medicine. 2003. 135, N 3. C257-260. CrossRef PubMed
  8. Aguilar-Bryan L., Clement J.P., Gonzalez G. et al. To­ward understanding the assembly and structure of KATP channels . Physiol Rev. 1998. 78. P.227-245 CrossRef PubMed
  9. Bondarenko A. Sodium-calcium exchanger contributes to membrane hyperpolarization of intact endothelial cells from rat aorta during acetylcholine stimulation . Brit. J.Pharmacol. 2004. 143. P.9-18. CrossRef PubMed PubMedCentral
  10. Brayden J.E. Functional roles of KATP channels in vascular smooth muscle . Clin. Exp. Pharmacol. Physiol. 2002. 29. P.312-316. CrossRef PubMed
  11. Bychkov R., Gollasch M., Ried C. et al. Effects of pinacidil on K+ channels in human coronary artery vas­cular smooth muscle cells . Amer. J. Physiol. 1997. 273. C161-C171. CrossRef PubMed
  12. DrieuLaRochelle C, Richard V., Dubois-Rande J.L. et al. Potassium channel openers dilate large epicardial coronary arteries in conscious dogs by an indirect, en-dothelium-dependent mechanism . J. Pharmacol. Exp. Therap . 1992. 263. P.1091-1096.
  13. Engler M.B., Engler M.M. Docosahexaenoic acid-in­duced vasorelaxation in hypertensive rats: mechanisms of action . Biol. Res. Nurs. 2000. 2. P.85-95. CrossRef PubMed
  14. Feleder E.C, Adler-Graschinsky E. Endothelium-mediated and N omega-nitro-L-arginine methyl ester-sensitive responses to cromakalim and diazoxide in the rat mesenteric bed. Eur. J. Pharmacol. 1997. 319. P.229-238. CrossRef
  15. Gasser R., Klein W., Kickenweiz E. Vasodilative response to hypoxia and simulated ischemia is mediated by ATP-sensitive K+ channels in guinea pig thoracic aorta . Angiology. 1993. 44. P.228-243. CrossRef PubMed
  16. Ghosh M., Hanna ST., Wang R., McNeill J.R. Altered vascular reactivity and KATP channel currents in vas­cular smooth muscle cells from deoxycorticosterone acetate (DOCA)-salt hypertensive rats . J. Cardiovas­cular. Pharmacol. 2004. 44. P.525-531. CrossRef PubMed
  17. Janigro D., Nguyen T.S., Meno J. et al. Endothelium-dependent regulation of cerebrovascular tone by ex­tracellular and intracellular ATP . Amer. J. Physiol. 1997. 273. H878-H885. CrossRef PubMed
  18. Janigro D., West G.A., Gordon E.L., Winn H.R. ATP-sensitive K+ channels in rat aorta and brain microvascu­lar endothelial cells . Ibid. 1993. 265. C812-C821. CrossRef PubMed
  19. Kalsner S. Hypoxic relaxation in functionally intact cattle coronary artery segments involves K+ ATP channels . J. Pharmacol. Exp. Therap . 1995. 275. C.1219-1226.
  20. Katnik C, Adams D.J. Characterization of ATP-sensi­tive potassium channels in freshly dissociated rabbit aortic endothelial cells . Amer. J. Physiol. 1997. 272. H2507-H2511. CrossRef PubMed
  21. Lahaye P., Fouassier L., Tazi K.A. et al. Endothelium-dependent blunted membrane potential responses to ATP-sensitive K+ channel modulators in aortae from rats withcirrhosis . J. Hepatol. 1999. 30. P.107-114. CrossRef
  22. Langheinrich U., Schnitzler M., Daut J. Ca2+-transients induced by K+ channel openers in isolated coronary capillaries . Pflug. Arch. 1998. 435. P.435-438. CrossRef PubMed
  23. Marchenko S.M., Sage S.O. Electrical properties of resting and acetylcholine-stimulated endothelium in in­tact rat aorta . J.Physiol. 1993. 462. P.735-751. CrossRef PubMed PubMedCentral
  24. Mehrke G., Pohl U., Daut J. Effects of vasoactive ago­nists on the membrane potential of cultured bovine aortic and guinea-pig coronary endothelium . J. Physiol. 1991. 439. P. 277-299. CrossRef PubMed PubMedCentral
  25. Minamino T., Hori M. Protecting endothelial function: A novel therapeutic target of ATP-sensitive potassium channel openers . Cardiovascular. Res. 2007. 73. P.448-449. CrossRef PubMed
  26. Murai T., Muraki K., Imaizumi Y, Watanabe M. Levcro-makalim causes indirect endothelial hyperpolarization via a myo-endothelial pathway . Br. J. Pharmacol. 1999. 128. P.1491-1496. CrossRef PubMed PubMedCentral
  27. Olanrewaju H.A., Gafurov B.S., Lieberman E.M. Involvement of K+ channels in adenosine A2A and A2B receptor-mediated hyperpolarization of porcine coronary artery endothelial cells . J. Cardiovascular. Pharmacol. 2002. 40. P.43-49. CrossRef PubMed
  28. Quast U., Guillon J.M., Cavero I. Cellular pharmacol­ogy of potassium channel openers in vascular smooth muscle . Cardiovascular. Res. 1994. 28. P.805-810. CrossRef PubMed
  29. Quayle J.M., Nelson M.T., Standen N.B. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle . Physiol. Rev. 1997. 77. P.1165-1232. CrossRef PubMed
  30. Sampson L.J., Hayabuchi Y., Standen N.B., Dart C. Caveolae localize protein kinase A signaling to arterial ATP-sensitive potassium channels . Circulat. Res. 2004. 95. P.1012-1018. CrossRef PubMed
  31. Simard J.M., Tsymbalyuk O., Ivanov A. et al. Endothe­lial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis fol­lowing spinal cord injury . J. Clin. Invest. 2007. 117. P.2105-2113. CrossRef PubMed PubMedCentral
  32. Taguchi H., Faraci F.M., Kitazono T., Heistad D.D. Relaxation of the carotid artery to hypoxia is impaired in Watanabe heritable hyperlipidemic rabbits . Arterioscler. Thromb. Vasc. Biol. 1995. 15. P.1641-1645. CrossRef PubMed
  33. Taguchi H., Faraci F.M., Kitazono T., Heistad D.D. Rela­xation of the aorta during hypoxia is impaired in chronically hypertensive rats . Hypertension. 1995. 25. P.735-738. CrossRef PubMed
  34. Usachev Y.M., Marchenko S.M., Sage S.O. Cytosolic calcium concentration in resting and stimulated endot­helium of excised intact rat aorta . J. Physiol. 1995. 489 (Pt 2). P.309-317. CrossRef PubMed PubMedCentral
  35. White R., Hiley C.R. Hyperpolarisation of rat mesenteric endothelial cells by ATP-sensitive K(+) channel open­ers . Eur. J. Pharmacol. 2000. 397. P.279-290. CrossRef
  36. White R., Hiley C.R. Endothelium and cannabinoid receptor involvement in levcromakalim vasorelaxation . Eur. J. Pharmacol. 1997. 339. P.157-160. CrossRef
  37. Yang B.C., Mehta J.L. Critical role of endothelium in sustained arterial contraction during prolonged hypoxia . Amer. J. Physiol. 1995. 268. H1015-H1020. CrossRef PubMed
  38. Zharikov S.I., Herrera H., Block E.R. Role of membrane potential in hypoxic inhibition of L-arginine uptake by lung endothelial cells . Ibid. 1997. 272. L78-L84. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2014-2022.